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Abstract

This thesis explores important issues associated with the calculation of phase dia-
grams from first principles.
A long standing limitation of first-principles phase diagram calculations is the

difficulty to account for the impact of lattice vibrations on phase stability. The vast
literature addressing this topic is thoroughly reviewed and a clear picture of the origin
of vibrational entropy differences between phases in an alloy system is presented. Vi-
brational entropy change can be attributed to the changes in chemical bond stiffness
associated with the changes in bond length that take place during a phase transforma-
tion. This so-called “bond stiffness vs. bond length” interpretation both summarizes
to key phenomenon driving vibrational entropy changes and provides a practical tool
to model them. Accurate first-principles calculations of vibrational entropy differ-
ences between ordered and disordered phases are performed in order to confirm the
validity of the proposed mechanism.
First-principles calculations of vibrational properties deserve special attention be-

cause the widely used Local Density Approximation is known to introduce systematic
errors. A semi-empirical correction is introduced and is shown to substantially im-
prove the accuracy of calculated vibrational and elastic properties of extended solids.
This thesis also studies another subproblem associated with the calculation of

phase diagrams: the determination of the most stable structures at absolute zero
of temperature. Although the technique to find these so-called ground states is well
established, its practical implementation remains computationally demanding. A new
and useful geometric interpretation to the formal solution of the ground state problem
is presented. There is good hope that such intuition will lead to practical algorithm
to find the ground states of an alloy system.
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À mes parents





Contents

1 Introduction 17
1.1 Atomistic simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Phase diagram calculations . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 The Effect of Lattice Vibrations on Phase Stability of Alloys 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Alloy theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 The effect of lattice vibrations . . . . . . . . . . . . . . . . . . 24
2.2.3 Coarse graining of the partition function . . . . . . . . . . . . 25
2.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Evidence of vibrational effects . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Comparison with Experiments . . . . . . . . . . . . . . . . . . 32
2.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Computational techniques . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Lattice vibrations in the harmonic approximation . . . . . . . 35
2.4.2 Anharmonicity . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.3 Energy models . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Experimental techniques . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6 The origin of vibrational entropy differences between phases . . . . . 48

2.6.1 The “bond proportion” effect . . . . . . . . . . . . . . . . . . 49
2.6.2 The volume effect . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6.3 The size mismatch effect . . . . . . . . . . . . . . . . . . . . . 51
2.7 Controlled approximations . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7.1 Short-range force constant . . . . . . . . . . . . . . . . . . . . 52
2.7.2 Short-range effective cluster interactions . . . . . . . . . . . . 54

2.8 Models of lattice vibrations . . . . . . . . . . . . . . . . . . . . . . . 55
2.8.1 The “bond proportion” model . . . . . . . . . . . . . . . . . . 55
2.8.2 The Debye model . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.8.3 The Einstein model . . . . . . . . . . . . . . . . . . . . . . . . 59

2.8.4 The “stiffness vs. length” approach . . . . . . . . . . . . . . . 60
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9



3 First-principles calculations of vibrational entropy 65
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Ab Initio calculations . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.3 The disordered state . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.4 Force constants calculations . . . . . . . . . . . . . . . . . . . 69

3.3 The Pd-V system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 The Ni-Al system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.4.4 The origin of the small vibrational entropy change upon disor-

dering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Correcting Overbinding in LDA Calculations 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 The Importance of Volume . . . . . . . . . . . . . . . . . . . . 91
4.3.2 Conceptual Framework . . . . . . . . . . . . . . . . . . . . . . 92
4.3.3 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.1 Linearity of ∆Exc in Volume . . . . . . . . . . . . . . . . . . . 101
4.5.2 Importance of the Core Charge Density . . . . . . . . . . . . . 102
4.5.3 Linearity of Pxc in Concentration . . . . . . . . . . . . . . . . 104
4.5.4 Atom-Specific Correction . . . . . . . . . . . . . . . . . . . . . 106

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 The ground state problem 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Formulation of the ground state problem as a minimization
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.2 Determination of the configurational polytope . . . . . . . . . 111
5.3 Redefinition of the Problem . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.3 Back to Our Problem . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.4 General Principles . . . . . . . . . . . . . . . . . . . . . . . . 115

10



5.4 Generating Candidate Inequalities . . . . . . . . . . . . . . . . . . . . 116
5.4.1 Linear Combinations of Inequalities . . . . . . . . . . . . . . . 116
5.4.2 Excluding a Given Vertex . . . . . . . . . . . . . . . . . . . . 117
5.4.3 Inequality Tightness . . . . . . . . . . . . . . . . . . . . . . . 119
5.4.4 From Rational to Integral Weights . . . . . . . . . . . . . . . 121

5.5 Testing Inequality Validity . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5.1 Convex Combination and Validity . . . . . . . . . . . . . . . . 122
5.5.2 Converting Low Inequalities to High Inequalities . . . . . . . . 124
5.5.3 Using Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5.4 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . 126
5.5.5 Unicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.6.1 Representing an Infinite Sum . . . . . . . . . . . . . . . . . . 129
5.6.2 General Principles . . . . . . . . . . . . . . . . . . . . . . . . 130
5.6.3 Cancellation of Identical Terms . . . . . . . . . . . . . . . . . 130
5.6.4 Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.6.5 Choosing the Best Symmetry . . . . . . . . . . . . . . . . . . 132
5.6.6 Avoiding Infinite Loops . . . . . . . . . . . . . . . . . . . . . . 134
5.6.7 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.6.8 Merging the Construction Process with Inequality Generation 137
5.6.9 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.6.10 Improved Method . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.6.11 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Conclusion 145

A Selected topics related to lattice vibrations in alloys 147
A.1 The absence of mass effects in the high-temperature limit . . . . . . . 147
A.2 A simple model of anharmonicity . . . . . . . . . . . . . . . . . . . . 148
A.3 Modeling the disordered state . . . . . . . . . . . . . . . . . . . . . . 149
A.4 The Einstein model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.5 Derivation of the “bond proportion” model . . . . . . . . . . . . . . . 152
A.6 Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B Structure construction algorithm 161
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B.2 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
B.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B.3.1 Structure Construction . . . . . . . . . . . . . . . . . . . . . . 163
B.3.2 Screening Out Candidate Cells . . . . . . . . . . . . . . . . . 164

B.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Bibliography 167

11



12



List of Figures

2-1 The Coarse-Graining Approach. . . . . . . . . . . . . . . . . . . . . . 27
2-2 The “Bond Proportion” Mechanism. . . . . . . . . . . . . . . . . . . 49
2-3 The Volume Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . 50

3-1 8-Atom SQS and D022 structures. . . . . . . . . . . . . . . . . . . . . 70
3-2 Stretching and Bending Terms of the Nearest-Neighbor Spring Tensor

as Function of Bond Length. . . . . . . . . . . . . . . . . . . . . . . . 75
3-3 Bond Length Distribution. . . . . . . . . . . . . . . . . . . . . . . . . 77
3-4 Shift in Average Bond Stiffness and Bond Length upon Disordering. . 77
3-5 Calculated and Experimental Heat Capacities. . . . . . . . . . . . . . 81
3-6 Calculated and Experimental Lattice Parameters as a Function of Tem-

perature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3-7 Calculated and Experimental Phonon DOS of the L12 Structures. . . 82
3-8 Calculated Phonon DOS of the L12 and SQS-8 Structures. . . . . . . 84
3-9 Vibrational Entropy as a Function of Atomic Volume in the Ordered

and the Disordered States. . . . . . . . . . . . . . . . . . . . . . . . . 85
3-10 Bond Stiffness as a Function of Bond Length in the Ni-Al System. . . 88

4-1 Calculated versus Experimental Bulk Modulus of Selected Elements. . 92
4-2 Non-Local Exchange-Correlation Pressure as a Function of Concentra-

tion in Metallic Systems. . . . . . . . . . . . . . . . . . . . . . . . . . 97
4-3 Non-Local Exchange-Correlation Pressure as a Function of Concentra-

tion in Ionic Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4-4 Non-Local Exchange-Correlation Pressure as a Function of Concentra-

tion in SiC, a Covalent System. . . . . . . . . . . . . . . . . . . . . . 98
4-5 Equation of State of Iron Calculated with the LDA only and with the

LDA Using an Exchange-Correlation Pressure (LDA-P). . . . . . . . 99
4-6 Equation of State of LiMnO2 Calculated with the LDA Only and with

the LDA Using an Exchange-Correlation Pressure (LDA-P). . . . . . 100
4-7 Schematic Shape of the Exchange-Correlation Hole (ρxc) for a Refer-

ence Electron Located at Point r in the Interstitial Region. . . . . . . 104
4-8 Region Influencing the Electron Pair Correlation Function . . . . . . 105
4-9 Sum of Contributions to the Exchange-Correlation Energy at a Point

in the Interstitial Region . . . . . . . . . . . . . . . . . . . . . . . . 106
4-10 Approximating the Non-Local Exchange-Correlation Energy as a Sum

of Independent Contributions . . . . . . . . . . . . . . . . . . . . . . 107

13



5-1 Relationship Between High-Dimensional and Low-Dimensional Quan-
tities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5-2 Illustration Accompanying Proposition 2. . . . . . . . . . . . . . . . . 118
5-3 Illustration Accompanying Proposition 3. . . . . . . . . . . . . . . . . 119
5-4 The Concept of Tightness of an Inequality. . . . . . . . . . . . . . . . 120
5-5 Illustration Accompanying Proposition 4. . . . . . . . . . . . . . . . . 123
5-6 Example of the Use of Proposition 9. . . . . . . . . . . . . . . . . . . 140

B-1 A Candidate Lattice Vector. . . . . . . . . . . . . . . . . . . . . . . . 164
B-2 Sufficient Condition for Two-Dimensional Periodicity. . . . . . . . . . 165
B-3 Problem Arising when no “Buffer Zone” is Used. . . . . . . . . . . . . 165

14



List of Tables

2.1 Calculated Vibrational Entropy Differences. . . . . . . . . . . . . . . 31
2.2 Abbreviations Used in Tables 2.1 and 2.3. . . . . . . . . . . . . . . . 32
2.3 Experimental Measurements of Vibrational Entropy Differences. . . . 34
2.4 Relation Between the Vibrational Entropy Change upon Disordering

and the Volume Change upon Disordering in Various Theoretical In-
vestigations of the Ni3Al Compounds . . . . . . . . . . . . . . . . . . 46

2.5 Comparison Between Vibrational Entropies Obtained from the “Stiff-
ness vs. Length” Model and from a First Nearest Neighbor Spring
Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1 Parameters Used in the First-Principles Calculations. . . . . . . . . . 68
3.2 Correlations of the Structures Used. . . . . . . . . . . . . . . . . . . . 69
3.3 Differences in Vibrational Entropy Between the L12 and the D022

Structures in the Ni-Al and Pd-V Systems. . . . . . . . . . . . . . . . 70
3.4 Vibrational Entropy (in kB) as a Function of the Number of Nearest

Neighbor (NN) Shell Included in the Born-von Kármán Model. . . . . 72
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Chapter 1

Introduction

1.1 Atomistic simulations

One of the central questions that materials science seeks to answer is: “How to design
a material for a specific purpose?” The traditional approach to this question can be
summarized as follows:

1. Try out a set of existing materials and pick the best candidates.

2. Fine-tune their properties, by trial and error, through the controlled addition
of various impurities or through various processing steps.

A good understanding of the microscopic processes that determine the desired ma-
terials properties is of tremendous help in narrowing down the number of possibilities
to try out. During the second half of this century, the development of powerful char-
acterization techniques has been a very helpful guide in identifying those mechanisms
and in allowing a more effective search for new materials.
Over the last two decades a radically different tool has become available to aid in

the materials design: computer simulations at the atomic level. Atomistic simulations
offer an unprecedented level of control over experimental conditions and unlimited
characterization capabilities. Thanks to this level of control, candidate materials can
be tested for desirable properties before considerable effort is spent on attempting to
synthesize them. Since the position of each atom and the energy of the system are
fully known, any materials property can, in principle, be obtained from an atomistic-
level calculation.
In an atomistic simulation, the atoms can, for instance, be placed in a specific

configuration so that the formation energy of various point defects can be compared.
The knowledge of the precise structure of a defect is crucial to devise ways to limit or
promote their formation. Such information is essentially inaccessible experimentally.
There is, however, one main limitation associated with atomistic simulations:

Computing power often limits what can be computed at a reasonable cost. For
instance, it would be impractical to determine the hardness of a metal by actually
simulating, at the atomic level, the whole region of the metal that undergoes plastic
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deformation during a conventional hardness measurement. But there is an interesting
and important complementarity between virtual and real experiments:

What is difficult to measure is easy to compute . . . and vice-versa.

Properties that are difficult to measure include “ideal” properties, such as forma-
tion energies of perfect crystals, formation energies of point defects, band structures
of perfect crystals, surface energies, activation barriers, etc. These properties are
precisely the ones that are easy to calculate, thanks to the high symmetry of the
geometries involved. Why focus on these idealized properties? They are the basic
ingredients of most theories or models used in materials science. Formation energies,
for instance, contribute to determine the relative stability of different phases. Activa-
tion barriers determine diffusion coefficients with the help of transition state theory.
In the various kinetic models of phase transformations, surface energies influence nu-
cleation and growth rates of precipitates, etc. Knowing these “ideal” properties often
brings just the key information that allows a better understanding of the microscopic
origin of the macroscopic phenomena of interest.

As computing power increases, increasingly complex properties become accessi-
ble to computations, bringing more insight into increasingly intricate phenomena. It
is tempting to extrapolate this trend and claim that, one day, any materials prop-
erties could be determined by a very accurate brute force calculation involving an
unthinkable number of atoms. But this is unlikely to happen, for the following rea-
son. Figuratively speaking, in a real experiment, each nucleus or each electron is
responsible for solving the equations governing its behavior. In a numerical exper-
iment, millions of atoms constitute one transistor which can handle only one “bit”
of the dozens needed to represent one real number among the hundreds needed to
describe the wavefunction of one electron in one of its many possible states. While
computer experiments offer better control and characterization capabilities, they are
a fundamentally inefficient way to represent exactly what is going on in a real system.
The only way that the advantages of computer simulation can be harvested without
suffering from their inefficiency is by introducing carefully chosen approximations.

Approximations are possible because most particles in a solid state system spend
most of their time doing uninteresting things. Electrons in the lowest energy levels
behave nearly as if their were around a free atom. The nuclei oscillate in a nearly
harmonic fashion billions of times before exchanging position with a neighboring
atom. These uninteresting behaviors can usually be encapsulated in a model that
summarizes the essential features. In this fashion, the computational requirements
can be drastically reduced and practical results can be obtained. Approximations
are a fact of life in calculations, just like measurement errors and impurities are
intrinsic to experiments. The main challenge of computational material science is to
devise accurate approximations that allow the calculation of materials properties at
a reasonable computational cost.

Trying to mimic the actual physical system is almost never the best way to model it.
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The present thesis is no exception to that rule in the sense that it seeks devel-
ops new approximations that extend the range of properties that can be practically
calculated using atomistic calculations.

1.2 Phase diagram calculations

There is currently considerable interest in developing tools that allow the design of
materials with the help of virtual experiments. But for such a “virtual laboratory”
to be useful, it needs to include a tool that can determine whether a given material
can actually be synthesized. This crucial tool is the calculation of phase diagrams.
A particular material can only be synthesized if it is stable or, at least, metastable,
which is precisely the type of information that is provided by a phase diagram. Phase
diagrams have always played a central role in materials science and it is natural that
their importance carries over to virtual experiments.

The wealth of thermodynamic information that needs to be calculated in order to
determine a phase diagram is also useful in its own respect. Most models determining
the kinetic behavior of a system require as an input a “thermodynamic driving force”
parameter, which is usually given by a difference in free energy between two phases,
an information that is a natural by-product of the calculation of a phase diagram.

In this thesis, we will seek to improve one specific type of phase diagram compu-
tations: “First-principles” calculations, also called “ab initio” calculations. A first-
principles calculation seeks to determine the properties of a material without relying
on any experimental input, starting solely from the knowledge of the atomic num-
ber of the constituents. We will focus on solid state phase diagrams in alloys, for
which first-principles calculations offer the most advantages over experimental mea-
surements. On the one hand, calculations involving solid phases are much more
manageable than, for instance, those involving liquid phases. On the other hand, on
the experimental side, the determination of the solid state part of a phase diagram is
the most likely to be hindered by sluggish kinetics or characterization problems.1

The calculation of phase diagrams from first principles is a challenging task, be-
cause phase transitions are determined by the collective behavior of a large number
of atoms. However, the computational requirements of the quantum mechanical cal-
culations needed to describe the energetics of the system are such that they can only
be performed on systems with a small number of atoms.

Over the last twenty years, the formalism allowing the practical calculation of a
phase diagram from the information provided by quantum mechanical energy calcu-
lations has been carefully laid out. It is now possible to predict relatively complex
solid-state phase diagrams from first-principles. Several excellent reviews on the topic
exist [41, 39, 150]. However, the accuracy of these calculations is currently limited by
a three factors.

1While it is easy to determine when an alloy melts, it is much more difficult to determine when
it undergoes an order-disorder transition.
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1. The quantum mechanical calculations used as an input for the procedure rely
on various approximations that limit their accuracy.

2. Computational limitations make it difficult to account for the fact that atoms
vibrate around their equilibrium position. For this reason, phase diagram calcu-
lations are often performed without including the energetic and entropic effects
of atomic vibrations.

3. One of the subproblems associated with the calculation of phase diagrams is
the determination of the most stable structures at absolute zero of tempera-
ture. The exact solution to this so-called “ground state problem” unfortunately
involves substantial computing power.

The problem of the accuracy of quantum mechanical calculations is not unique to
phase diagram calculations. Any first-principles calculation of materials properties
is potentially limited by this problem. For this reason, this important problem is
currently the focus of intense research in the field of solid state physics.
In this thesis, we instead focus on the two last problems, which are more specific

to the calculation of phase diagrams. The effect of lattice vibration on alloy thermo-
dynamics is a quite active topic of study within the alloy theory community. The
thesis provides a thorough summary of the major findings in this area of research
and introduces a new model that embodies the essential physics behind the thermo-
dynamic impact of lattice vibrations. This innovation, called the “bond stiffness vs.
bond length” model, not only provides the key intuition behind the origin of vibra-
tional effects, but also suggests a practical way to account for lattice vibrations in
phase diagram calculations.
Another original contribution is the introduction of a simple way to alleviate an

important problem faced when computing vibrational properties from first-principles:
The most widespread approximation used in ab initio calculations, called the Local
Density Approximation (LDA), results in a systematic bias in the calculated vibra-
tional properties.
This thesis finally addresses the ground state problem by devising a new framework

that has the potential to drastically reduce the computational complexity of this task.

1.3 Overview

A review of the current literature focusing on the problem of modeling lattice vibration
in first-principles phase diagram calculations is given in Chapter 2. This chapter
also introduces the new “bond stiffness vs. bond length” model. Chapter 3 then
presents an investigation of two alloy systems that illustrate the effectiveness of the
proposed approach, the Ni-Al and Pd-V systems. Chapter 4 describes a simple way
to drastically reduce the bias in the calculated vibrational properties caused by the
use of the Local Density Approximation. Finally, Chapter 5 attacks the ground state
problem and provides a very promising formalism that has the potential of making
the determination of the ground states of an alloy a much more manageable problem.
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Chapter 2

The Effect of Lattice Vibrations on
Phase Stability of Alloys

2.1 Introduction

The field of alloy theory has made substantial progress over the last two decades. It
is now possible to predict relatively complex solid-state phase diagrams from first-
principles, that is, without the help of any experimental input. Several excellent
reviews on the topic exist [41, 39, 150]. The accuracy of calculated phase diagrams is
currently limited by two factors. First, one needs, as a starting point, the energy of
the alloy in various atomic configurations. The quantum-mechanical calculations used
to obtain these energies are computationally intensive and various approximations,
such as the local density approximation (LDA), are employed to make calculations
tractable. The precision of the calculated phase diagrams is obviously limited by the
precision of these approximations.

A second shortcoming is that computational limitations make it difficult to ac-
count for the fact that atoms vibrate around their equilibrium position. For this
reason, phase diagram calculations are often performed without including the ener-
getic and entropic effects of atomic vibrations. Attempts to either assess the validity
of this approximation or to devise computationally efficient ways to account for lat-
tice vibrations are currently the focus of intense research. This interest is fueled by
the observation that phase diagrams obtained from first principles often incorrectly
predict transition temperatures. It is hoped that lattice vibrations could account
for the remaining discrepancies between theoretical calculations and experimental
measurements.

Three main questions are addressed in this chapter.

1. Do lattice vibrations have a sufficiently important impact on phase stability that
their thermodynamic effects need to be included in phase diagram calculations?

2. What are the fundamental mechanisms that explain the relationship between
the structure of a phase and its vibrational properties?
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3. How can the effect of lattice vibrations be modeled at a reasonable computa-
tional cost?

This chapter is organized as follows. First, Section 2.2 presents the basic for-
malism that allows the calculation of phase diagrams, along with the generalization
needed to account for lattice vibrations. A review of the vast theoretical and ex-
perimental literature seeking to quantify the impact of lattice vibrations on phase
stability is then presented in Section 2.3. Section 2.4 describes the methods used
to calculate vibrational properties while Section 2.5 presents the experimental tech-
niques allowing their measurement. The main mechanisms at the origin of the effect
of lattice vibrations on phase stability, presented in Section 2.6, are then used to an-
alyze two common types of approximations: controlled approximations (Section 2.7)
and models of lattice vibrations (Section 2.8).

2.2 Generalities

Phase stability at constant temperature is determined by the free energy1 F . The
free energy can be expressed as a sum of a configurational contribution Fconfig and
vibrational contributions Fvib. The configurational contribution accounts for the fact
that atoms can jump from one lattice site to another, while vibrational contribution
accounts for the vibrations of each atom around its equilibrium position. The first part
of this section presents the traditional formalism used in alloy theory to determine
the configurational contribution. The second part introduces the basic quantities
that determine whether lattice vibrations have a significant effect on phase stability.
The third part describes how the traditional formalism can be adapted when lattice
vibrations do need to be accounted for.

2.2.1 Alloy theory

One of the goals of alloy theory is to determine the relative stability of phases charac-
terized by a distinct ordering of atomic species on a given periodic array of sites. This
array of sites, called the parent lattice, can be any crystallographic lattice augmented
by any motif. A convenient representation of an alloy system is the Ising model. In
the common case of a binary alloy system, the Ising model consists of assigning a spin-
like occupation variable σi to each site i of the parent lattice, which takes the value -1
or +1 depending on the type of atom occupying the site. A particular arrangement of
spins of the parent lattice is called a configuration and can be represented by a vector
~σ containing the value of the occupation variable for each site in the parent lattice.
When all the fluctuations in energy are assumed to arise solely from configurational

change, the Ising model is a natural way to represent an alloy. The thermodynamics

1Strictly speaking, at constant pressure, the Gibbs free energy G = F + PV should be used
instead of the Helmoltz free energy F , but at atmospheric pressure, the PV term is negligible for
an alloy.
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of the system can then be summarized in a partition function of the form:

Z =
∑
~σ

exp (−βE(~σ)) (2.1)

where β = 1/ (kBT ), and E(~σ) is the energy when the alloy has configuration ~σ. It
would be computationally intractable to compute the energy of every configuration
from first-principles. Fortunately, the configurational dependence of the energy can
be parametrized in a compact form with the help of the so-called cluster expansion
[119]. The cluster expansion is a generalization of the well-known Ising Hamiltonian.
The energy (per atom) is represented as a polynomial in the occupation variables:

E(~σ)

N
=
∑
α

mαJα

〈∏
i∈α′

σi

〉
(2.2)

where α is a cluster (a set of sites i). The sum is taken over all clusters α that are not
equivalent by a symmetry operation of the space group of the parent lattice, while
the average is taken over all clusters α′ that are equivalent to α by symmetry. The
coefficients Jα in this expansion embody the information regarding the energetics of
the alloy and are called the effective cluster interaction (ECI). The coefficient mα
are called multiplicities and indicate the number of clusters that are equivalent by
symmetry to α (divided by the number of lattice sites).2 This framework can be
extended to arbitrary multicomponent alloys [119].

It can be shown that when all clusters α are considered in the sum, the cluster
expansion is able to represent any function E (~σ) of configuration ~σ by an appropriate
selection of the values of Jα. However, the real advantage of the cluster expansion
is that, in practice, it is found to converge rapidly. An accuracy that is sufficient
for phase diagram calculations can be achieved by keeping only clusters α that are
relatively compact (e.g. short-range pairs or small triplets). The cluster expansion
thus presents an extremely concise and practical way to model the configurational
dependence of an alloy’s energy.

The process of calculating the phase diagram of an alloy system can be summarized
as follows. First, the energy of the alloy in a relatively small number of configurations
is calculated, for instance through first-principles computations. Second, the calcu-
lated energies are used to fit the unknown coefficients of the cluster expansion (the
ECI Jα). Finally, with the help of this compact representation, the energy of a large
number of configurations is sampled, in order to determine the phase boundaries.
This can be accomplished with either the Cluster Variation Method (CVM) [69, 41],
the low-temperature expansion (LTE) [70], or Monte-Carlo simulations [19].

2Both the number of clusters and the number of sites are infinite but their finite ratio can
be obtained by ignoring all but one periodic repetitions of the clusters (or the atoms) by the a
translational symmetry operation of the lattice.
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2.2.2 The effect of lattice vibrations

The previous Section described the framework allowing the calculation of phase di-
agrams under the assumption that thermodynamic of the alloy is determined solely
by configurational excitations. Accounting for vibrational excitations introduces cor-
rections to this simplified treatment. This section presents the basic quantities that
enable an estimation of the magnitude of the effect of lattice vibration on alloy ther-
modynamics. To understand the effect of lattice vibrations on phase stability, it is
instructive to decompose the configurational (“config”) and vibrational (“vib”) parts
of the free energy F α of a phase α into an energetic contribution E and an entropic
contribution S:

F α = Eαconfig − TS
α
config + E

α
vib − TS

α
vib. (2.3)

In the approximation of harmonic lattice vibrations and in the limit of high temper-
ature, the vibrational energy Eαvib is simply determined by the equipartition theorem
and is independent of the phase α considered. Hence as long as these approximations
are appropriate, lattice vibrations are mainly expected to influence phase stability
through their entropic contribution Sαvib.
Intuitively, the vibrational entropy Sαvib is a measure of the average stiffness of

an alloy, as can be best illustrated by considering an simple system made of large
number of identical harmonic oscillators. The softer the oscillators are, the larger
their oscillation amplitude can be, for a fixed average energy per oscillator. Hence,
the system samples a larger number of states and the entropy of the system increases.
In summary, the softer the alloy, the larger the vibrational entropy.
A phase with a large vibrational entropy is stabilized relative to other phases,

since a larger vibrational entropy results in a lower free energy, as seen by Equation
(2.3). From a statistical mechanics point of view, this fact can be understood by
observing that a phase that encloses more states in phase space is more likely to be
visited, as the system undergoes microscopic transitions, and therefore exhibits an
increased stability.
The central role of vibrational entropy can be further appreciated by consider-

ing the transition temperature between two phases α and β which differ in their
vibrational entropy by ∆Sα→βvib . The transition temperature obtained with both con-

figurational and vibrational contributions (T α→βconfig+vib) is related to the transition tem-

perature obtained with configurational effects only (T α→βconfig) by

T α→βconfig+vib ≈ T α→βconfig

(
1 +
∆Sα→βvib

∆Sα→βconfig

)−1
(2.4)

where ∆Sα→βconfig is the change in configurational entropy upon phase transformation [53,
106]. This result3 indicates that the quantity determining the magnitude of the effect

3This result is exact in the limit of small vibrational effects, high temperature and harmonic
vibrations.
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of lattice vibration on phase stability is the ratio of the vibrational entropy difference
to the configurational entropy difference. For this reason, most investigations aimed at
assessing the importance of lattice vibrations focus on estimating vibrational entropy
differences between phases. Since the configurational entropy (per atom) Sconfig is
bracketed by

0 ≤ Sconfig ≤ −kB (c ln c+ (1− c) ln (1− c)) ≤ kB ln 2 ≈ 0.693kB (2.5)

for a binary alloy at concentration c, Equations (2.4) and (2.5) provide us with a
absolute scale to gauge the importance of vibrations.

2.2.3 Coarse graining of the partition function

The Ising model presented in Section 2.2.1 appears to be intimately associated with
the assumption that energy is uniquely determined by the configuration. What can
then be done if lattice vibrations do turn out to be important? This section, shows
that, in fact, non-configurational sources of energy fluctuations can naturally be taken
into account within the Ising model framework through a process called “coarse grain-
ing” of the partition function [27, 28].
All the thermodynamic information of a system is contained in its partition func-

tion:

Z =
∑
i

exp [−βEi] , (2.6)

where β = 1/(kBT ) and Ei is the energy of the system in state i. In the case of
an alloy system, the sum over all possible states of the system can be conveniently
factored as following:

Z =
∑
L

∑
~σ∈L

∑
v∈~σ

∑
e∈v

exp [−βE(L,~σ, v, e)] (2.7)

where

• L is a so-called parent lattice: it is a set of sites where atoms can sit. In
principle, the sum would be taken over any Bravais lattice augmented by any
motif.

• ~σ is a configuration on the parent lattice: It specifies which type of atom rests
on each lattice site.

• v denotes the displacement of each atom away from its ideal lattice site.

• e is a particular electronic state (both the spatial wavefunction and spin state)
when the nuclei are constrained to be in a state described by v.

• E(L,~σ, v, e) is the energy of the alloy in a state characterized by L, ~σ, v and e.
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Each summation is taken over the states that are included in the set of states
defined by the “coarser” levels in the hierarchy of states. For instance, the sum over
displacements v includes all displacements such that the atoms remain close to the
undistorted configuration ~σ on lattice L.

While Equation (2.7) is in principle exact, practical first-principles calculations
of phase diagrams typically rely on various simplifying assumptions. The sum over
electronic states is often reduced to a single term, namely, the electronic ground
state. The validity of this approximation can be assessed by comparing the electronic
densities of states at the Fermi level of various structures. If needed, the contribution
of electronic entropy is, at least in its one-electron approximation, relatively simple
to include without prohibitive computational requirements [145].

An approximation that is much more difficult to justify is the reduction of the sum
over displacements v to a single term. This simplification has been extensively used
in alloy theory, because calculating the summation over v involves intensive calcula-
tions. The particular displacement typically chosen to represent a given configuration
~σ is the local minimum in energy that is the closest to the undistorted ideal structure
where atoms lie exactly at their ideal lattice sites. In this fashion, the state chosen
is the most probable one in the neighborhood of phase space associated with config-
uration ~σ. In this approximation, the partition function takes the form of an ising
model partition function:

Z =
∑
L

∑
~σ∈L

exp(−βE∗(L,~σ)) (2.8)

with E∗(L,~σ) = minv,e {E(L,~σ, v, e)}.

It turns out that the same statistical mechanics techniques developed in the con-
text of the Ising model can also be used in the more general setting where atoms are
allowed to vibrate (and where electrons are allowed to be excited above their ground
state). All is needed is to replace the energy E∗(L,~σ) by the constrained free energy
F (L,~σ, T ), defined as:

F (L,~σ, T ) = −kBT ln

(∑
v∈~σ

∑
e∈v

exp [−βE(L,~σ, v, e)]

)
. (2.9)

In other words, it is the free energy of the alloy, when its state in phase space is
constrained to remain in the neighborhood of the ideal configuration ~σ. This process,
called the ”coarse graining” of the partition function, is naturally interpreted as inte-
grating out the ”fast” degrees of freedom (e.g. vibrations) before considering ”slower”
ones (e.g. configurational changes) [28]. This process is illustrated in Figure 2-1. The
quantity to be represented by a cluster expansion is now the constrained free energy
F (L,~σ, T ). The only minor complication is that the effective cluster interactions
become temperature dependent.

There is some level of arbitrariness in the precise definition of the set of displace-
ment v over which the summation is taken in Equation 2.9. However, in the common
case where there is a local energy minimum in the neighborhood of ~σ and where the
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Figure 2-1: The Coarse-Graining Approach.

system spends most of its time visiting a neighborhood that can be approximated
by a harmonic potential well, the set of displacements over which the summation is
taken has little effect on the calculated thermodynamic properties. Under the above
assumptions, calculating the partition function of a constrained harmonic system and
a harmonic system of infinite extent gives essentially the same result:∑

v∈~σ

exp [−βE(L,~σ, v, T )] ≈
∑
v∈~σ

exp [−βEH(L,~σ, v, T )]

≈
∑
all v

exp [−βEH(L,~σ, v, T )]

where E(L,~σ, v, T ) = −kBT ln
∑
e∈v exp [−βE(L,~σ, v, e)] and EH(L,~σ, v, T ) denotes

a harmonic approximation to E(L,~σ, v). In this framework, all is needed to account
for lattice vibrations, is the determination of the free energy of a harmonic solid in
the neighborhood of any configurations ~σ. (Appendix A.6 discusses the case where
the above assumptions are violated, that is, when no local minimum exists in the
phase space neighborhood of ~σ.)

Although the cluster expansion formalism reduces the intractable problem of de-
termining F (L,~σ, T ) for all ~σ to the problem of calculating F (L,~σ, T ) for a finite
set of configurations ~σ, this task is still much more demanding than calculating the
energy E∗(L,~σ) for a finite set of ~σ. Devising an efficient way to calculate F (L,~σ, T )
is the fundamental problem that needs to be resolved in order to include vibrational
effects in phase diagram calculations.
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2.2.4 Conclusion

After presenting the basic framework enabling the calculation of the configurational
free energy, this section has presented two important aspects of the thermodynamics
of lattice vibrations.

1. Vibrational entropy differences between phases introduce corrections to the
transition temperatures of an alloy phase diagram calculated including only
configurational entropy.

2. The basic alloy theory framework can be adapted to account for lattice vibra-
tions by simply replacing the energy E∗(L,~σ) associated with each configuration
~σ by the free energy F (L,~σ, T ) of a system constrained to remain in the phase
space neighborhood of the ideal configuration ~σ.

2.3 Evidence of vibrational effects

In light of the large computational requirements associated with the inclusion of lattice
vibrations, is it important to ensure that such an endeavor is worth the effort. This
section reviews the experimental and theoretical evidence that supports the view that
vibrational effects are important in the context of phase diagram calculations. There
exists a large literature aimed at determining the vibrational properties of solids (see,
for instance, [12, 81, 24]). Here, the focus is given to investigations directly related to
the determination of vibrational entropy (or free energy) differences between phases
which differ solely by the ordering of the chemical species on an otherwise identical
parent lattice.

This relatively narrow choice is driven by two observations. First, while there
have been numerous investigations of the absolute vibrational properties of solids,
the more difficult issue that needs to be addressed in the context of phase stability
is the determination of accurate differences in vibrational properties. Second, it has
already been established that many structural phase transformations (e.g., from fcc
to bcc) are driven by lattice vibrations [111, 59]. This fact does not pose major
difficulties for the purpose of phase diagram calculations: one can easily compute the
vibrational properties of a few lattice types. The real difficulty is to calculate the
vibrational entropy of many configurations on each of these lattices, a task which is
only needed if vibrational properties differ substantially across distinct configurations
on an identical parent lattice.

The presentation will be mainly chronological, although deviations from that in-
tention will be made for the sake of clarity. We leave a more precise description
of the methods used for subsequent sections, focusing here on the results obtained.
The key theoretical and experimental results are summarized in Tables 2.1 and 2.3,
respectively.
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2.3.1 Calculations

The idea that the state of order of an alloy could be coupled with its lattice dynamics
is not new. During the 1960’s, as the foundations of alloy thermodynamics were
being established, the question of the effect of lattice vibrations was already being
raised. Studies on the order-disorder transition of β-brass [23, 144], for instance, have
indicated that lattice vibrations are crucial to accurately model the magnitude of the
experimentally observed discontinuity in heat capacity at the phase transition, which
determines the change in vibrational entropy upon disordering.

After these initial investigations, increasingly accurate models for the coupling
between lattice vibration and the state of order of an alloy, were then developed
[87, 82, 14, 15, 16, 133, 53]. These models generally involved unknown parameters that
need to be estimated from available experimental thermodynamic data. A recurring
theme among these studies is the idea that, for sensible choices of the stiffness of the
springs connecting the atoms, the effect of lattice vibrations is likely to be important.
The estimated vibrational entropies of disordering lie between 0.05kB, for the most
conservative estimates [87], up to the order of 0.5kB.[133].

With the increased availability of computing power, the application of first-prin-
ciples methods became a practical possibility and the unknown parameters of the
theoretical models of lattice vibration then became directly computable, without
relying on experimental input. Initially, only simple bulk properties, such as the bulk
modulus were computable at a reasonable cost. This prompted the development of
methods to infer vibrational properties from the knowledge of elastic constants. A
particularly popular scheme, the Moruzzi-Janak Schwarz (MJS) method [92], was
used in many phase diagram calculations [13, 120, 132, 118, 101, 34, 1, 85, 84, 100,
18]. In the Cd-Mg [13], Ag-Cu [120] and Au-Ni [34] systems, agreement with the
experimentally measured phase diagrams was substantially improved.

More recently, other techniques were used to obtain vibrational properties from
elastic constants. The so-called virtual crystal approximation (VCA) was used to
calculate the vibrational free energy of a disordered alloy in the Ni-Cr system [36].
The calculated vibrational free energy exhibited qualitatively the same concentration-
dependence as the vibrational free energy obtained by subtracting the experimentally
determined free energy from the calculated configurational free energy.

As computational power steadily increased, the focus of research gradually turned
to more accurate treatments of the lattice dynamics. Calculations of the lattice
dynamics of ordered and disordered Cu3Au, within the tight-binding (see, for instance,
[62, 112]) and the virtual crystal approximations [32], predicted a vibrational entropy
increase of 0.12kB upon disordering. In the first phase diagram calculation based on a
full lattice dynamics analysis [129], the SCPIB method [25] was used to calculate that
vibrational effects lower the top of the miscibility gap by about 10% in the CaO-MgO
system.

In view of the large computational requirements of accurate ab initio methods,
many researchers sought to calculate vibrational properties with simpler energy mod-
els, whose lower computational requirements enabled a more accurate handling of
issues such as anharmonicity or the representation of the disordered state. The de-
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velopment of the embedded atom method (EAM) [38] offered the opportunity to
accurately model metallic alloys at a reasonable computational cost. Investigations
based on the EAM typically found large vibrational entropy change upon disorder-
ing in metallic alloys. The vibrational entropy change for Cu3Au was predicted to
be 0.10kB [2], while for Ni3Al, values ranging from 0.22kB to 0.29kB were obtained
[2, 8, 9, 115]4.

Other researchers constructed pair potentials from an equation of state determined
from first-principles calculations [121]. The resulting pair potentials were then used
to calculate disordering vibrational entropies with no further approximations. This
method attributed a vibrational entropy change of 0.11kB to the disordering reaction
of the Fe3Al compound.

Rather unexpected results were uncovered as it became possible to compute vi-
brational entropy differences from a complete lattice dynamics analysis as well as
state-of-the-art ab initio techniques. Calculations on the Si-Ge system [55] found
almost no effect of lattice vibrations: the vibrational entropy of formation of the
metastable zincblende structure was a mere −0.02kB. The first ab initio calculation
of a vibrational entropy of disordering [136] placed an upper bound of 0.05kB in the
case of the order-disorder transition of the Ni3Al compound, in sharp contrast with
previous EAM calculations which found a much larger value.

The first phase diagram calculation [106] including ab initio vibrational effects,
did find a large vibrational effect in the Cu-Au system (about a 20% reduction in
transition temperatures). However, the resulting correction on the phase boundaries
worsened the agreement with the experimentally determined phase diagram. Inter-
estingly, the same problem had previously been observed in the calculations on the
MgO-CaO system [129], although to a lesser extent. Finally, the vibrational entropy
change upon disordering of the Pd3V compound [137] was calculated to be −0.07kB,
although the simplest theories put forward in the earliest investigations of lattice vi-
brations in alloys would predict this value to be large and positive. In short, the latest
results based on accurate first-principles calculations represent a significant disconti-
nuity with the earlier evolution of the field. To date, there have been no instances
of first-principles phase diagram calculations based on a full lattice dynamics anal-
ysis where the effect of vibration was large and resulted in an improvement of the
agreement with experimental results.

The fact that modeling lattice vibrations does not necessarily improve agreement
with experiments points to either one of two possibilities: (i) The discrepancies be-
tween calculated and measured phase diagrams arise from effects other than lattice
vibrations or (ii) vibrational effects are so difficult to compute accurately that the
typical errors made in estimating them are comparable to their absolute magnitude.

4Disordered Ni3Al is actually a metastable phase. The values quoted here are at the highest
temperatures reported by the investigators, as close as possible to the true disordering temperature
that would be observed if the alloy did not melt before.
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Composition Transition ∆S T Methods Refs. year(
kB
atom

)
(K)

AgCu L1∗0 (form) -0.11 high ASW,MJS [120] † 1991
Ag3Cu L1∗2 (form) -0.22 high ASW,MJS [120] † 1991
Ag3Cu L1∗2 (form) -0.02 high ASW,MJS [120] † 1991
Cu3Au L12 → fcc rnd 0.12 663 TB,BvK,QH,VCA [32] 1993
CdMg hcp rnd (form) 0.13 900 LMTO,MJS,CE [13] 1993
CdMg B19 (form) 0.14 high LMTO,MJS [13] † 1993
Cd3Mg D019 (form) -0.03 high LMTO,MJS [13] † 1993
CdMg3 D019 (form) -0.10 high LMTO,MJS [13] † 1993
Cu3Au L12 → fcc rnd∗ 0.10 high EAM,BvK,H,SC [2] 1994
Ni3Al L12 → fcc rnd∗ 0.29 high EAM,BvK,H,SC [2] 1994
SiGe B3∗ (form) -0.02 high PP,BvK,H [55] 1996
ArKr L10 (form) -0.06 high pot.,BvK,H [55] 1996
Ca0.5Mg0.5O fcc rnd (form) 0.04 high SCPIB,BvK,H,CE [129] † 1996
Ni3Al L12 → fcc rnd∗ 0.27 1400 EAM,BvK,QH,SC [8][9] 1997
NiCr fcc rnd (form) n.a. 1550 FLASTO,VCA [36] 1997
Ni3Al L12 → fcc rnd∗ 0.20 1500 EAM,MC,SC [89] 1998
Ni3Al L12 → fcc rnd∗ 0.22 1200 EAM,MD,SC [115] 1998
Ni3Al L12 → fcc rnd∗ 0.00 high PP,BvK,QH,SQS [136] 1998
Ni3Al L12 → D022 0.04 high PP,BvK,QH [136] 1998
CuAu L10 → fcc rnd 0.18 800 PP,LR,QH,CE [106] 1998
Cu3Au L12 → fcc rnd 0.08 800 PP,LR,QH,CE [106] 1998
CuAu3 L12 → fcc rnd 0.05 800 PP,LR,QH,CE [106] 1998
CuAu L1∗1 (form) 0.58 800 PP,LR,QH [106] 1998
CuAu L10 (form) 0.21 800 PP,LR,QH [106] 1998
Cu3Au L12 (form) 0.20 800 PP,LR,QH [106] 1998
CuAu3 L12 (form) 0.26 800 PP,LR,QH [106] 1998
Al3Li L1∗2 → D0

∗
22 0.04 high PP,BvK,H [123] 1999

Fe3Al D03 → bcc rnd 0.11 high TB-LMTO,pot.,H,SC [121] 1998
Pd3V D022 → fcc rnd -0.07 high PP,BvK,QH,SQS [137] 2000
Pd3V L12 → D022 0.08 high PP,BvK,QH [137] 2000

(form): Vibrational entropy of formation from pure elements.
rnd: Disordered solid solution.
∗: metastable compound
†: calculated from the data presented in the paper.

Table 2.1: Calculated Vibrational Entropy Differences. See Table 2.2 for abbrevia-
tions.
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pot.: pair potentials H: harmonic approximation
EAM: embedded atom method QH: quasiharmonic approximation
TB: tight-binding MC: Monte Carlo
TB-LMTO: tight-binding LMTO MD: molecular dynamics
LMTO: linear muffin-tin orbitals D: Debye model
ASW: atomic spherical waves BvK: Born-von Kármán spring model
PP: pseudopotential calculations SC: supercell method

LR: linear response
cal.: differential calorimetry measurements VCA: virtual crystal approximation
1xtal: single crystal phonon dispersion measurements MJS: Moruzzi, Janak & Schwarz model
INS: incoherent neutron scattering measurements CE: cluster expansion
anh.: anharmonicity included. SQS: special quasirandom structures

Table 2.2: Abbreviations Used in Tables 2.1 and 2.3.

2.3.2 Comparison with Experiments

Over the last 10 years, advances in experimental techniques have made it possible
to directly measure vibrational entropy differences, instead of inferring them from
discrepancies between measured thermodynamical data and calculated estimates of
configurational contributions to the free energy. Experimental investigations have
thus provided independent assessments of the role of lattice vibration on phase sta-
bility.
The first direct measurement was obtained from differential calorimetry measure-

ments on the Ni3Al compound [11] and found the vibrational entropy of disordering
to be at least 0.19kB. This finding was corroborated with subsequent incoherent
neutron scattering measurements [49], which bracketed its value between 0.1kB and
0.3kB. These findings fueled much of the interest of the recent theoretical literature
on the Ni3Al compound [2, 8, 9, 115, 136]. Unfortunately, the agreement between
experimental and theoretical determinations is relatively poor: Even in studies where
the vibrational entropy itself agrees quantitatively, its proposed physical origin differs
substantially: Experiments explained the vibrational entropy change within the har-
monic approximation, while most calculations [8, 9, 115] attributed it to anharmonic
effects. Many of these conflicting findings were clarified by first-principles calculations
[136], which identified the problems encountered in the experimental measurements
and the earlier calculations. The general consensus among researchers is now that
given the numerous difficulties faced when studying Ni3Al, unambiguous evidence of
the importance of lattice vibrations should probably be sought in other systems.
Similar calorimetry measurements were then performed on the Fe3Al [10] and

Cu3Au [95] compounds, where more conclusive results could be obtained. The vibra-
tional entropy of disordering of Fe3Al was determined to be 0.10kB, a result which
was later corroborated by calculations [121]. In the case of Cu3Al the experimental
result, 0.14kB, showed very good agreement with the earlier theoretical predictions
of 0.12kB [32].
The estimation of vibrational effects was also addressed by directly probing the

lattice dynamics through neutron scattering measurements. The vibrational entropy
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of formation of a disordered alloy in the Fe-Cr system was obtained from single crys-
tal measurements of phonon dispersion curves [50] in the virtual crystal approxima-
tion.Values ranging from 0.14kB to 0.21kB were obtained, depending on concentration.
In order to determine the lattice dynamics of disordered alloys beyond the virtual

crystal approximation, the incoherent neutron scattering technique was extensively
used and refined [98, 97, 117, 21, 49]. With this technique, the analysis of the ex-
perimental data is considerably simplified when the species present have comparable
incoherent neutron scattering intensities, which lead to the study of two compounds
satisfying this requirement: Ni3V and Co3V. Measurements on the Ni3V compound
[98] found a surprisingly small vibrational entropy change upon disordering, 0.04kB,
while the Co3V compounds exhibited a relatively large value 0.15kB [97]. A related
study found the vibrational entropy change associated with the fcc-hcp transition of
the Co3V compound to be 0.07kB [117]. It is interesting to note that the disordering
reaction exhibits a larger vibrational entropy change than the allotropic transforma-
tion in Co3V. Perhaps more importantly, the investigations of the Ni3V and Co3V
compounds presented the first experimental evidence of important anharmonic effects.
The same technique of incoherent neutron scattering was employed to revisit the

Cu-Au system [21]. The vibrational entropy of formation of the Cu3Au compound
was found to be 0.06kB at 300K, corroborating earlier estimations based on phonon
dispersion curve measurements [20]. At 800K, the measured value of 0.12kB falls
within experimental error of the results of ab-initio calculations of 0.20kB [106].
The vibrational entropy of formation of various ordered compounds, obtained from

single crystal phonon dispersion measurements, were recently compiled [20] and show
formation values of up to 0.5kB. However, this compilation contains many systems
where the alloy has a crystal structure that differs from the one of the pure elements
and the formation values thus also include the vibrational entropy change associated
with a structural transition. When all these cases are excluded, the maximum vibra-
tional entropy change decreases to a more conservative upper bound of 0.20kB, which
is reached in the ordered phase of Ni3Al.

2.3.3 Conclusion

Although early investigations of the impact of vibrational effects on phase stability
consistently found large effects, it is now becoming apparent, as more precise theo-
retical and experimental techniques became available, that vibrational effects are not
systematically large. It is therefore important to identify the factors which determine
when they are, so that the effort devoted to calculating them is proportional to their
expected magnitude.

2.4 Computational techniques

To understand the nature of the difficulties encountered, it is instructive to first
consider how, in principle, the vibrational properties of a single configuration ~σ can
be calculated with an arbitrary accuracy. The techniques presented in this section are
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Composition Transition ∆S T Methods Refs. year(
kB
atom

)
(K)

Ni3Al L12 → fcc rnd 0.27 high cal.,D,H [11] 1993
Ni3Al L12 → fcc rnd 0.19 343 cal. [11] 1993
Fe3Al D03 → bcc rnd 0.10± 0.03 high cal.,D,H [10] 1994
Cu3Al L12 → fcc rnd 0.14± 0.05 high cal.,1xtal,H,VCA [95] 1995
Fe0.70Cr0.30 bcc rnd (form) 0.14± 0.05 high 1xtal,H,VCA [50] 1995
Fe0.53Cr0.47 bcc rnd (form) 0.20± 0.05 high 1xtal,H,VCA [50] 1995
Fe0.30Cr0.70 bcc rnd (form) 0.21± 0.05 high 1xtal,H,VCA [50] 1995
Ni3Al L1∗2 → fcc rnd 0.10 high INS,H [49] 1995
Ni3Al L1∗2 → fcc rnd 0.30 high INS,H,VCA [49] 1995
Ni3V D022 → fcc rnd 0.04± 0.02 300 cal.,INS [98] 1996
Co3V L1∗2 → fcc rnd 0.15± 0.02 high INS [97] 1997
Cu3Au L12 (form) 0.06± 0.03 300 INS,anh. [21] 1999
Cu3Au L12 (form) 0.12± 0.03 800 INS,anh. [21] 1999
Co3V hP24 → fcc rnd 0.07 high INS,QH [117] 1999
CeSn3 γ-Ce + β-Sn → L12 −0.54± 0.09 high 1xtal,H [20] 1999
LaSn3 hcp-La + β-Sn → L12 −0.43± 0.09 high 1xtal,H [20] 1999
Ni3Al L12 (form) −0.20± 0.03 high 1xtal,H [20] 1999
Ni3Fe fcc-Ni + bcc-Fe → L12 0.09± 0.03 high 1xtal,H [20] 1999
Pt3Fe fcc-Pt + bcc-Fe → L12 0.14± 0.03 high 1xtal,H [20] 1999
Pd3Fe fcc-Pd + bcc-Fe → L12 0.05± 0.03 high 1xtal,H [20] 1999
Cu3Zn fcc-Cu + hcp-Zn → L12 −0.01± 0.03 high 1xtal,H [20] 1999
Cu3Au L12 (form) 0.07± 0.03 high 1xtal,H [20] 1999
Fe3Pt bcc-Fe + fcc-Pt → L12 0.55± 0.03 high 1xtal,H [20] 1999
Fe3Al bcc-Fe + fcc-Al → D03 −0.06± 0.03 high 1xtal,H [20] 1999

∗: metastable compound

Table 2.3: Experimental Measurements of Vibrational Entropy Differences. See Table
2.2 for abbreviations.
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the tools that were used to investigate the importance of lattice vibrations presented
in Section 2.3.1.

Phase diagram calculation involves computing vibrational properties for a set of
configurations ~σ. Carrying out the full phonon problem for each configuration results
in undue computational requirements. Nevertheless the formal solutions presented
here play an important in devising practical ways to include vibrational effects in
phase diagram calculations. This section first focuses on the treatment lattice vibra-
tion within the harmonic approximation, before addressing the issue of anharmonicity.
Finally, important consideration concerning the energy models used as an input for
these procedures are discussed.

2.4.1 Lattice vibrations in the harmonic approximation

In this section, we review the problem of determining the constrained free energy of
a system in the neighborhood of a configuration ~σ, under the assumption that the
system spends most of its time in a region near a local energy minimum, where a
harmonic approximation to the energy surface is accurate. In this approximation,
the free energy determination reduces to the well-known phonon problem [81], [12].

Theory

Consider a system consisting of N atoms. Let Mi be the mass of atom i and u (i) be
its displacement away from its equilibrium positions. Time derivatives are denoted
by dots while Greek letter subscripts denote one of the cartesian components of a
vector. In the harmonic approximation, the energy of the system can be written as:

H =
1

2

∑
i

Mi (u̇ (i))
2 +
1

2

∑
i,j

uT (i) Φ (i, j)u (j)

where

Φαβ (i, j) =
∂2E

∂uα (i) ∂uβ (j)

∣∣∣∣
u(l)=0 ∀l

.

The 3 × 3 matrices Φ (i, j) are called the force constants tensors, as they relate the
displacement of atom j to the force f exerted on atom i:

f (i) = Φ (i, j)u (j) .

Such a harmonic approximation of a solid is often referred to as a Born-von Kármán
model.

Note that contrary to usual treatment, we do not immediately impose translational
symmetry, in order to derive a few general results that also apply to systems such as
disordered alloys.
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The substitution e (i) =
√
Miu (i) yields:

H =
1

2

(∑
i

ė2 (i) +
∑
i,j

eT (i)
Φ (i, j)√
MiMj

e (j)

)
. (2.10)

The 3N eigenvalues λm of the matrix
5

D =




Φ(1,1)
√
M1M1

· · · Φ(1,N)
√
M1MN

...
. . .

...
Φ(N,1)√
MNM1

· · · Φ(N,N)√
MNMN


 . (2.11)

then give the frequencies νm =
1
2π

√
λm of the normal modes of oscillation. In the

harmonic approximation, the knowledge of these frequencies is sufficient to determine
the thermodynamic quantities we are interested in. This information is conveniently
summarized by the phonon density of states (DOS), which gives the number modes
of oscillation having a frequency lying in the interval [ν, ν + dν]:

g (ν) =
1

N

3N∑
m=1

δ (ν − νm) .

It can be shown that the free energy of the system (restricted to remain close to a
given configuration ~σ) is given by [81]:

F

N
=

E∗

N
+ kBT

∫ ∞
0

ln

(
2 sinh

(
hν

2kBT

))
g (ν) dν

=
E∗

N
+
kBT

N

∑
m

ln

(
2 sinh

(
hνm

2kBT

))

where E∗ is the potential energy of the system at its equilibrium position and h is
Planck’s constant. Phase transitions in alloys typically occur at a temperature where
hνm
kBT
� 1 for most νm, so that the high temperature limit of this expression is a useful

simplification:

F

N
=

E∗

N
+ kBT

∫ ∞
0

ln

(
hν

kBT

)
g (ν) dν

=
E∗

N
+
kBT

N

∑
m

ln

(
hνm

kBT

)

The usual criterion used to determine the temperature range where high temperature

5Among the 3N eigenvalues, the 6 eigenvalues associated with rigid body translations and rota-
tions are zero. In the thermodynamic limit, these few degrees of freedom are inconsequential. To
avoid notational complications, we simply assume that the solid is fixed to a reference frame by
springs so that the resulting dynamical matrix has 3N nonzero eigenvalues.
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limit is reached is the Debye temperature. Note that the factor h
kBT
is often omitted

because it cancels out when calculating vibrational free energy differences. In the
high temperature limit, another important form of cancellation occurs: The atomic
masses have no effect on the free energies of formation. This important result, shown
in Appendix A.1, rules out that masses play any significant role in determining phase
stability at high temperatures.
As mentioned before, a convenient measure of the magnitude of the effect of

lattice vibrations on phase stability is the vibrational entropy, which can be obtained
from the vibrational free energy by the well known thermodynamical relationship
Svib = −

∂Fvib
∂T
. Contrary to the vibrational free energy of formation, the vibrational

entropy of formation6 is temperature-independent in the high-temperature limit of
the harmonic approximation, allowing a unique number to be reported as a measure
of the importance of vibrational effects.
In a crystal, the determination of the normal modes is somewhat simplified by the

translational symmetry of the system. Let n denote the number of atoms per unit
cell. Let u

(
l
i

)
denote the displacements away from its equilibrium position of atom i

in cell l. Let Φ
(
l l′

i j

)
be the force constant relative to atom i in cell l and atom j in

cell l′ and let e
(
l
i

)
=
√
Miu

(
l
i

)
. Bloch’s theorem indicates that the eigenvectors of the

dynamical matrix are of the form

e

(
l

i

)
= eι2π(k·l)e

(
0

i

)
(2.12)

where l denotes the cartesian coordinates of one corner of cell l and k is a point in
the first Brillouin zone. This fact reduces the problem of diagonalizing the 3N × 3N
matrix D to the problem of diagonalizing a 3n× 3n matrix D (k) for various values
of k. This can be shown by a simple substitution of Equation (2.12) into Equation
(2.10).7 The dynamical matrix D (k) to be diagonalized is given by8

D (k) =
∑
l

ei2π(k·l)




Φ(0 l1 1)√
M1M1

· · ·
Φ(0 l1n)√
M1Mn

...
. . .

...
Φ( 0 ln 1)√
MnM1

· · ·
Φ( 0 ln n)√
MnMn


 .

As before, the resulting eigenvalues λi (k) for i = 1 . . . n, give the frequencies of the
normal modes (νi (k) =

1
2π

√
λi (k)). The function νi (k) for a given i is called a phonon

branch, while the plot of the k-dependence of all branches along a given direction in
k space is called the phonon dispersion curve. In periodic systems, the phonon DOS

6The absolute value of the vibrational entropy is not constant at high temperature, but
its temperature-dependence does not vary across distinct phases and thus formation values are
temperature-independent.
7And changing the summation over atoms by summations over atoms and cells.
8The reader shown be aware that there are many possible conventions regarding the phase factor:

for instance, ei2π(k·l), e−i2π(k·l), ei(k·l), ei2π(k·(l+x(j))) where x (j) is the coordinate of atom j within
the cell. While all convention yield different dynamical matrices, they all have the same eigenvalues.
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is defined as

g (ν) =

3n∑
i=1

∫
BZ

δ (ν − νi (k)) dk

where the integral is taken over the first Brillouin zone.

Force Constant Determination

The above theory relies, of course, on the availability of the force constant tensors.
The determination of these force constant tensors is the focus of this section. Before
describing the methods used for their determination, we will first review important
properties of the force constant tensors.

While the number of unknown force constants to be determined is in principle
infinite, it can, in practice, be reduced to a manageable finite number with the help
of the following two observations. First, the force constant Φ(i, j) between two atoms
i and j beyond a given distance can be neglected. Second, the symmetry of the crystal
imposes linear constraints between the elements of the force constant tensors.

The accuracy of the approximation made by truncating the range of force constant
can be tested by gradually increasing the range of interactions, until the quantities
to be determined no longer vary substantially. It is important to note that most
thermodynamic quantities can be written as a weighted integral of the phonon DOS
and their convergence rates are thus much faster than the pointwise convergence rate
of the phonon DOS itself [55, 136]. That is, the errors on the DOS at each frequency
tend to be quickly averaged out when the contributions of each frequency are added.

The restrictions on the force constants imposed by the symmetry of the lattice
can be expressed as follows. Consider the force constant Φ(i, j) of atoms i and j
located at x(i) and x(j) and consider a symmetry transformation that maps a point
of coordinate x to Sx+ t, where S is a 3×3 matrix and t and 3×1 translation vector.
In general, if the crystal is left unchanged by such a symmetry operation, the force
constant tensors should be left unchanged as well. This fact imposes the following
constraints on the spring tensors:

Sx(i) + t = x(i′)
Sx(j) + t = x(j′)

}
⇒ Φ(i, j) = STΦ(i′, j′)S.

Additional constraints on the force constants can be derived from simple invariance
arguments. The most important constraints, obtained by noting that rigid transla-
tions and rotations must leave the forces exerted on the atoms unchanged, are

Φ (i, i) = −
∑
j 6=i

Φ (i, j)

Φ (i, j) = ΦT (j, i)

Additional constrains can be found in [81, 24].
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There are essentially three approaches to determining the force constants: ana-
lytic calculations, supercell calculations and linear response calculations. Analytic
calculations are only possible when the energy model is sufficiently simple to allow
a direct calculation of the second derivatives of the energy with respect to atomic
displacements, as in the case of empirical pair potential models. For first-principles
calculations, either one of the two following methods have to be used.

The supercell method The supercell method [143],[55] consists of slightly per-
turbing the positions of the atoms away from their equilibrium position and calculat-
ing the reaction forces. Equating the calculated forces to the forces predicted from
the harmonic model yields a set of linear constraints that allows the unknown force
constants to be determined.9

F (i) = Φ(i, j)u(j)

When the force constants considered have a range that exceeds the extent of the
primitive cell, a supercell of the primitive cell has to be used. (The simultaneous
movement of the image atoms introduces linear constrains among the forces that
prevent the determination of some of the force constants.)
While any choice of the perturbations that allows the force constants to be deter-

mined is in principle equally valid, a few simple principles drastically narrow down
the number of perturbations that need to be considered. For a given supercell, there
is a only of finite number of non-redundant perturbations to consider.
A minimal set of non-redundant perturbations can be obtained as follows.

• Consider in turn each atom in the asymmetric unit of the primitive cell.

• Mark the chosen atom (and its periodic images in the other supercells) and
consider it as distinct from other atoms of the same type. (This operation
effectively removes some of the symmetry operation of the space group of the
crystal.)

• Construct the point group {Si} of the site where this atom is located. (Si is a
3× 3 matrix.)

• Move the chosen atom along a direction u1 such that the space spanned by the
vectors Siu1 (for all i) has the highest dimensionality possible.

• If the resulting dimensionality is less than three, consider an additional direction
u2 such that the space spanned by the vectors Siuj for j = 1, 2 has the highest
dimensionality possible.

9Equalities between calculated and predicted energies can be used as well. Using energies alone
to determine the force constants would be a rather inefficient use of the information provided by
ab-initio calculations. Once a first-principles calculations of the energy of a distorted structure has
been completed, the calculation of the forces acting on the atoms is computationally inexpensive.
The knowledge of the energy provides a single equation while the knowledge of the forces provide
up to 3 equations per atom.
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• If the resulting dimensionality is less than three, consider a direction u3 orthog-
onal to u1 and u2.

The resulting displacements uj for all atoms in the asymmetric unit gives a min-
imal list of perturbations that is sufficient to find all the force constants that can
possibly be determined with the given supercell. This result follows from the obser-
vation that any other possible displacement can be written as a linear combination of
the displacements considered above (or displacements that are symmetrically equiv-
alent to them).
When determining force constants with the supercell method, it is important to

verify that the presence of small numerical noise in the calculated forces does not
result in too much error in the fitted force constants. To minimize noise in the fitted
force constants, it may be necessary to use more than the minimum possible number
of perturbations. The additional perturbations should ideally be based on different
supercells, to minimize the systematic errors introduced by the movement of the
image atoms.
When ab-initio calculations are used to calculate the forces, it is especially im-

portant to iterate the electronic self-consistency steps to convergence. Even though
the energy may appear to be well converged, the forces may not yet be. Energy is
the solution to a minimization procedure, while forces are not. As a result, errors on
the energy are of a second order in the minimization parameters, while the errors on
the forces are of the first order in the minimization parameters. For the same reason,
special attention should be given to the structural relaxations.
The true system is not exactly harmonic and the calculated forces may exhibit

anharmonic components that introduce noise into the fitted force constants. This
problem can be alleviated by considering an additional set of perturbations, where
the displacements have the opposite sign. Subtracting the calculated forces obtained
for this new set of displacements from the corresponding displacements of the opposite
sign exactly cancels out all the odd-order anharmonic terms. Of course, for pertur-
bations such that the negative displacement is equivalent by symmetry to the corre-
sponding positive displacement, this duplication is unnecessary, because the terms of
odd order are already zero by symmetry.
Additional guidelines for fitting force constants can be found in [3, 143, 55].

Linear response Linear response calculations seek to directly evaluate the dynam-
ical matrix for a set of k points. The starting point of the linear response approach
is evaluation of the second-order change in the electronic energy induced by a atomic
displacements from perturbation theory. Within this framework, practical schemes
to compute vibrational properties in semiconductors [17, 56, 57, 142] and metallic
systems [40, 114, 104] have been devised. In this section we will not discuss the the-
ory behind linear response calculations, but rather focus on how the results of linear
response calculations can be used in the context of alloy phase diagram calculations.
The dynamical matrices calculated from linear response theory are exact in the

sense that they account for arbitrarily long-range force constants. While in the su-
percell method inaccuracies arise from the truncation of the force constants, the limit
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in precision for linear response calculations arises from the use of a small number of k
points to sample the Brillouin zone. To address this issue, two methods can be used.
A set of special k points can be selected through the Chadi-Cohen [30] or Mon-

khorst-Pack [86] schemes. Special k points are selected so that the integral over
the Brillouin zone of a function f (k) that contains no Fourier components above a
given frequency can be exactly evaluated by a weighted average of the function at
each special point. Since thermodynamic quantities can be written as integrals of
functions of the dynamical matrix f (D (k)) over the Brillouin zone, the procedure is
straightforward to apply in this context.
The other approach is the so-called Fourier inversion method (see, for instance,

[56, 114]). The calculated dynamical matrices from a set of k points are used to
determine the value of the force constants up to a certain interaction range. The
resulting harmonic model can then be used to calculate the dynamical matrix at
any point in the Brillouin zone, allowing a much finer sampling of the Brillouin zone
for the purpose of performing the numerical integration required to determine any
thermodynamic quantity.
The Fourier inversion method is preferable when the function f (D (k)) to be inte-

grated exhibits high-frequency components, while the dynamical matrix itself, D (k),
does not. Such a situation would arise when f (·) is highly nonlinear. The smoothness
of D (k) then ensures that it can be represented with a small number of Fourier com-
ponents. The less well-behaved function f (D (k)) can then be accurately integrated
with as many k points as needed, using the dynamical matrix D (k) calculated from
the spring model.
In the case of vibrational free energy calculations, the special k points method has

been observed to converge rapidly with respect to the number of k points [54]10, so
that the Fourier inversion method is probably unnecessary.11

For a given set of special k points, there is an approximate correspondence between
the number of Fourier components that can be integrated exactly and the range of
force constants that can be determined. The correspondence is exact only when the
lattice has one atom per cell and when the function f (·) is linear.12

While supercell and linear response calculations are in principle equivalent in
terms of the information they provide, they have complementary advantages in terms
of computational efficiency. The linear response method is the most efficient way
to perform high-accuracy calculations that would otherwise be tedious and computer
intensive with the supercell method. However, when a high accuracy is not needed, the
supercell method has the advantage that various simplifying assumptions regarding
the structure of the force constant tensors can transparently be used to drastically

10Calculations of the authors, based on data from [106] also support this finding.
11Note that the function whose integral gives the free energy exhibits a logarithmic singularity at
the Γ point, which could lead to high frequency components that are difficult to integrate accurately.
However, in three-dimensional systems, this logarithmic singularity contributes very little to the
value of the free energy, so that the rate of convergence of the integral as a function of the number of
k points is not dramatically slowed down by the presence of the singularity. As a result, the special
k point method can safely be used in practical calculations of the vibrational free energy.
12As can be shown by a simple Fourier transform.
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reduce computational requirements. It is not clear at which level of accuracy the
cross-over between the efficiency of each approach occurs, but it is important to keep
both approaches in mind. Another consideration is that in the continuously evolving
field of computational solid state physics, new first-principles energy methods are
continually developed, and the derivation of the appropriate linear response theory
always follows the derivation of simple force calculations. Hence, despite the elegance
of linear response theory, it is to be expected that the supercell method will always
remain of interest.

2.4.2 Anharmonicity

While the harmonic approximation is remarkably accurate given its simplicity, it has
one important limitation: It is unable to model thermal expansion and its impact on
vibrational properties. Both the free energy F and the entropy S can be obtained
from the the heat capacity Cp:

S =

∫ T
0

Cp

T
dT and F = E|T=0 −

∫ T
0

S dT,

Hence, a simple way to account for thermal expansion is to use the following well
known thermodynamic relationship between the heat capacity at constant pressure
Cp and at constant volume Cv:

Cp = Cv + BV Tα
2 (2.13)

where α is the coefficient of volumetric thermal expansion whileB is the bulk modulus.
In a purely harmonic model, there is no thermal expansion and Cv can be regarded
as the heat capacity of a harmonic model while the correction term BV Tα2 arises
from anharmonic effects.

Equation (2.13) is directly useful in the context of experimental measurements
where all quantities can be directly measured [98, 117]. In the following section, we
describe the computational techniques used to handle anharmonicity.

The quasiharmonic model

A simple modification to the harmonic approximation, called the quasiharmonic ap-
proximation, allows the calculation of thermal expansion at the expense of a moderate
increase in computational cost. In the quasi-harmonic approximation, the phonon fre-
quencies are allowed to be volume-dependent, which amounts to assuming that the
force constant tensors are volume-dependent. The best way to understand this ap-
proximation is to study a simple model system where it is essentially exact. Consider a
linear chain (with periodic boundary conditions) of identical atoms interacting solely
with their nearest neighbors through a pair potential of the form:

U (r) = a1r + a2r
2 + a3r

3.
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Let L be the average distance between two nearest neighbors and let u (i) denote the
displacement of atom i away from its equilibrium position. The total potential energy
(per atom) of this system is then given by

U

N
=
1

N

∑
i

a1 (L+ u (i)− u (i+ 1)) + a2 (L+ u (i)− u (i+ 1))
2

+a3 (L+ u (i)− u (i+ 1))
3

This expression can be simplified by noting that all the terms that are linear in
(u (i)− u (i+ 1)) cancel out when summed over i.

U

N
= a1L+ a2L

2 + a3L
3 + (a2 + 3a3L)

1

N

∑
i

(u (i)− u (i+ 1))2

+O
(
(u (i)− u (i+ 1))3

)
The first three terms, a1L+a2L

2+a3L
3, give the elastic energy of a motionless lattice

while the remaining terms account for lattice vibrations. The important feature of
this equation is that, even within the harmonic approximation, the prefactor of the
harmonic term, (a2 + 3a3L), depends on the anharmonicity of the potential (through
a3L). In the more realistic case of three-dimensional systems, this length-dependence
translates into a volume-dependence13 of the harmonic force constants Φ

(
l l′

i j

)
.

The volume dependence of the phonon frequencies induced by the volume-depen-
dence of the force constants is traditionally modeled by the Grüneisen parameter

γkj = −
∂ ln νj (k)

∂ lnV

which is defined for each branch j and each point k in the first Brillouin zone. But
since we are interested in determining the free energy of a system, it is convenient to
directly parametrize the volume dependence of the free energy itself. This dependence
has two sources: the change in entropy due to the change in the phonon frequencies
and the elastic energy change due to the expansion of the lattice:

F (T, V ) = E∗ (V ) + FH (T, V )

where E∗ (V ) is the energy of a motionless lattice constrained to remain at volume V ,
while FH (V ) is the free energy of a harmonic system constrained to remain at volume
V . The equilibrium volume V ∗ (T ) at temperature T is obtained by minimizing this
quantity with respect to V . The resulting free energy at temperature T is then given
by F (T, V ∗ (T )).14

13Of course, in general, it could be a general strain dependence, if the symmetry of the crystal is
sufficiently low.
14Formally, the free energy should be determined by an sum over every possible volume:
−kBT ln (

∑
V exp (−βF (V ))). However, since the volume is a macroscopic quantity, its distribution

can be considered a delta function and the sum reduces to a single term: the free energy at the
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Let us consider a particular case that illustrates the effect of temperature on the
free energy, at the cost of a few reasonable assumptions. We assume that

• the elastic energy of the motionless lattice is quadratic in volume;

• the high temperature limit of the free energy can be used.

As shown in Appendix A.2, in this approximation, the volume expansion ∆V as
a function of temperature takes on a particularly simple form:

∆V

N
=
3kBTγ

B

where γ is an average Grüneisen parameter:

γ =
1

3N

3N∑
m=1

V

νm

∂νm

∂V
.

The resulting temperature dependence of the free energy is given by

F (T )

N
=
F (T, V0)

N
−
(3kBTγ)

2

2B (V0/N)
.

These expressions provide a simple way to account for thermal expansion.

Simulation

There are two main simulation-based approaches to handling anharmonicity: Monte
Carlo (MC) [19] and Molecular Dynamics (MD) [5]. While both approaches are able
to model anharmonicity at any level of accuracy, they suffer from two limitations.
First, they are computationally demanding and therefore have, to date, been limited
to simple energy models. Second, they are unable to model quantum mechanical
aspects of vibrations and are therefore limited to the high temperature limit.15

The use of simulation techniques to determine vibrational properties bypasses
the coarse-graining framework presented in section 2.2.3: Both configurational and
vibrational excitations are treated on the same level. With a simple and accurate
energy model, one can also calculate phase diagrams directly from MC simulations,
where both atomic displacements and changes in chemical species are allowed during
the simulation [116]. Obtaining phase diagrams from MD simulations would be pro-
hibitive, because over the time scale accessible with MD, too few Ising configurations
are sampled to satisfy the ergodicity requirement.
While a full determination of a phase diagram from simulations has so far not

been attempted [122], both MD and MC have been used to determine differences in

volume that minimizes the free energy.
15Monte Carlo simulations that include quantum effects are possible for systems containing a small
number of particles.
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vibrational entropy between two phases. Because neither MD nor MC are able to
provide free energies directly, a special integration technique has to be used. In the
context of MC simulations, the procedure is called MC integration and consists in
expressing a thermodynamic quantity inaccessible to MC as an integral of a quantity
that can be obtained through MC. A simple example is the change Gibbs free energy
G as function of temperature at constant pressure, which can be derived from the
Gibbs-Helmholtz relation

F (T2) = F (T1)−

∫ T2
T1

E

T 2
dT

where E is the internal energy.
In the context of MD simulation, free energy differences can be obtained through

a process called adiabatic switching (see, for instance, [115]). This method consists in
gradually changing the interatomic potentials during the course of the simulation, in
order to model a change in the configuration of the alloy, without requiring atoms to
jump between lattice sites. This task is achieved by defining an effective Hamiltonian

Hλ = (1− λ)H
α + λHβ

that gradually switches from the Hamiltonian Hα associated with phase α to the
Hamiltonian Hβ associated with phase β as the switching parameter λ goes from
0 to 1. This convenient path of integration permits the calculation of free energy
differences between phases at a reasonable computational cost, with the help of the
following thermodynamic relation:

F β = F α +

∫ 1
0

(
〈Hβ〉λ − 〈Hα〉λ

)
dλ

where 〈Hα〉λ is the time average of the energy calculated using Hamiltonian Hα (and
similarly for 〈Hβ〉λ.
There is an interesting and useful complementarity between the quasi-harmonic

model and simulation techniques [46, 89]. Quantum effects typically become negligible
in the temperature range where strong anharmonic effects, which cannot be modeled
accurately within the quasiharmonic framework, become important.

2.4.3 Energy models

Force constants and anharmonic contributions are ultimately always derived from an
energy model. In this section, we discuss various energy models, from empirical po-
tential models to first-principles techniques, and the error or bias they may introduce
in the vibrational properties.

Simple pairwise potentials of functionals (such as the Embedded Atom Method)
are computationally efficient so that all vibrational properties can often be deter-
mined without any approximations beyond the ones associated with the specific en-
ergy model. For this reason, the use of simple energy models has proven to be an
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T (K) So→dvib ∆V o→d/V o (%) Reference
high 0.29 3% [2]
1200 0.22 2% [115]
1000 0.15 2% [8][9]
1000 0.11 1.6% [89], Foiles-Daw EAM potentials
high 0.00 0.5% [136]

Table 2.4: Relation Between the Vibrational Entropy Change upon Disordering and
the Volume Change upon Disordering in Various Theoretical Investigations of the
Ni3Al Compounds

invaluable tool to understand trends in vibrational entropies and to test a number of
approximations [54, 46, 90, 55, 89].

Several potential sources of error can arise when using pair potentials or pair
functionals. The first one is that vibrational entropy is extremely sensitive to the
precise nature of the relaxations that take place in an alloy and a simple energy model
may not be able to accurately predict these relaxations. This problem is particularly
apparent when considering the wide range of values found in the different calculations
of the vibrational entropy change upon disordering of the Ni3Al compound [2, 8, 115,
136]. But, as shown in Table 2.4, most of the discrepancies can be explained from
differences in the predicted volume change upon disordering.

This is often aggravated by the fact that simple energy models are often not
fitted to phonon properties. The problem was noted in [8] where the embedded atom
potentials used were fitted to various structural energies and elastic constants [140].
The acoustic modes were accurately extrapolated from the fit to the elastic constants,
but the phonon frequencies associated with the optical modes were overestimated by
about 10%.16 The question of the accuracy of simple energy models clearly merits
further attention. In this respect, the fit of simple energy models to the results of
ab-initio calculations [122, 121] offers a promising way to include vibrational effects.

In oxides, electronic polarization has to be included in order to correctly model
both the low frequency acoustic modes and the high frequency optical modes. Elec-
tronic polarization in oxides can be included with the so-called core and shell model.

While quantum mechanical methods are computationally more intensive, they
generally provide more accurate force constants. The most obvious error introduced
by the common Local Density Approximation (LDA) is its systematic underprediction
of lattice constants which leads to an overestimation of elastic constants and phonon
frequencies. This systematic error makes it difficult to compare the absolute values of
calculated vibrational properties with experimental measurements. However, for the
purpose of calculating phase diagrams, this bias may be less of a concern, because

16Most of the bias in the vibrational entropy introduced by this problem should however cancel
out when taking the difference in vibrational entropy between two phases where the same problem
is present.
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phase stability is determined by differences in free energies, and one would expect a
large part of this systematic error to cancel out.

A practical way to alleviate the LDA bias is to perform calculations at a negative
pressure such that the calculated equilibrium volume agrees with the experimentally
observed volume. As shown in [135], a very good estimate of the required nega-
tive pressure can be obtained by a concentration-weighted average of the pressure
associated with the elemental solids. For the purpose of calculating elastic proper-
ties, this approach appears to outperform the most popular alternative to LDA, the
Generalized Gradient Approximation (GGA).17

2.5 Experimental techniques

The experimental literature on the thermodynamics of lattice vibrations in alloys
relies on mainly three techniques.

In differential calorimetry measurements, the heat capacity of two samples in a
different state of order is compared over a range of temperatures. If the upper limit
of the range of temperatures is chosen to be sufficiently low, substitutional exchanges
will not occur and the difference in heat capacity can be assumed to arise solely from
vibrational effects. Integration of the difference in heat capacity (divided by tem-
perature) then yields a direct measure of the vibrational entropy differences between
the two samples of the range of temperature considered. This, of course, assumes
that the lower temperature bound is sufficiently low, so that the vibrational entropy
of both samples can be assumed to be zero at that temperature. It also assumes
that the electronic contribution to the heat capacity is negligible. In practice, both
assumptions are typically satisfied. The main problem with this method is that one is
usually interested in vibrational entropy differences at the transition temperature of
the alloy, which is usually above the upper limit of the temperature range used in the
heat capacity measurements. The heat capacity therefore needs to be extrapolated to
high temperature. This constitutes the main source of inaccuracies in this method.
Examples of the use of this method can be found in [11, 10, 96, 95, 98, 97].

A second method is the measurement of phonon dispersion curve through inelastic
neutron scattering. For ordered alloys that can be produced in large single crystals,
this method is very powerful. Once the dispersion curves along special directions
in reciprocal space are measured, they can be used to fit Born-von Kármán spring
models which, in turn, yield the normal frequencies for any point in the Brillouin zone.
With the help of the standard statistical mechanics techniques described in Section
2.4.1, this information is sufficient to determine the vibrational entropy. Examples of
applications of this method can be found in [10, 96, 50, 49, 95]. The applicability of
this method is unfortunately limited by the availability of large single crystals. The
case of disordered alloys presents an even more fundamental problem: Disordered

17Part of the success of the “negative pressure” LDA is due to the fact that it uses information
regarding the true experimental volume instead of being fully ab-initio. But the knowledge of one
pressure per element is a relatively small amount of information.
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alloys do not have well defined dispersion curves and there is no straightforward way
to fit the spring constants of a spring model from the experimental data. This problem
is usually addressed by using the virtual crystal approximation, in which different
constituent atoms are replaced by one “average” type of atom (see Appendix A.3).
Unfortunately, this approximation has repeatedly been shown to have a very limited
accuracy for the purpose of measuring vibrational entropy differences [8, 115, 121, 96].
Nevertheless, single crystal phonon dispersion curve measurements for ordered alloys
present a unique opportunity to perform a stringent test of the accuracy of theoretical
models.

A third method is the determination of the phonon density of states from inco-
herent neutron scattering measurements. In contrast to the preceding approach, this
method can readily be applied to disordered systems and to compounds for which
single crystals are not available [49, 98, 97, 21, 117]. The main limitation of this ap-
proach is that different atomic species have different neutron scattering cross-sections.
The scattered intensity at each frequency measures a “density of states”, where each
mode is weighted by the scattering intensity of the atoms participating in the mode
in question. Thus, one needs some prior information about the vibrational modes in
order to reconstruct the true phonon DOS from the experimental data. In the case of
alloys, there is not a one-to-one correspondence between the measured data and the
vibrational entropy. This problem can be alleviated by choosing alloy systems where
the scattering intensity of each species is similar [97, 117].

Other techniques have been used to measure vibrational entropy differences. Some
researchers have used the fact that vibrational entropy and thermal expansion are
directly related to estimate vibrational entropy differences from accurate thermal
expansion measurements [93, 94]. The measurement of inelastic nuclear resonant
scattering spectrum has also been used to relate changes in the phonon DOS to
changes in the short-range order of a disordered alloy [52]. Finally, relatively noisy
estimates of vibrational entropy differences can be obtained from X-ray Debye-Waller
factors or from the measurement of mean square relative displacement (MSRD) of the
atoms relative to their neighbors through extended electron energy-loss fine structure
(EXELFS) [11].

2.6 The origin of vibrational entropy differences

between phases

We have presented the framework that allows for the inclusion of vibrational effects
in phase diagram calculations. However, the formalism presented so far does not
directly provide any intuition regarding the origin of vibrational entropy differences.
This intuition is important to be able the predict when vibrational effects should
be important and, when they are, which approximation should be used to calculate
them.

Three mechanisms have been suggested to explain the origin of vibrational entropy
differences in alloys. We will discuss them in turn.
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Figure 2-2: The “Bond Proportion” Mechanism.

2.6.1 The “bond proportion” effect

In most theoretical studies based on simple models systems [82, 14, 16, 133, 53], the
effect of the state of order of an alloy on its vibrational entropy has been attributed
to the fact that bonds between different chemical species have a different stiffness
than the bonds between identical species. When the proportion of each type of bond
in the alloy changes during, for instance, an order-disorder transition, the average
stiffness of the alloy changes as well, resulting in a change of its vibrational entropy.
This so-called “bond-proportion” mechanism is illustrated in Figure 2-2 in the case of
an order-disorder transition. In a system with ordering tendencies, the bond between
unlike atoms are associated with an increased stability and are thus expected to be
stiffer than bonds between alike atoms. Since disordering reduces the number of bonds
between unlike atoms in favor of bonds between similar atoms, the disordered state
is expected to be softer, and thus, have a large vibrational entropy. Vibrations would
then tend to stabilize the disordered state relative to the ordered state, reducing the
transition temperature. A similar reasoning in the case of a phase separating system
shows that the disordered state should be softer than a phase separated mixture,
indicating that the miscibility gap should be lowered as a result of vibrational effects.

The presence of a “bond proportion” effect can be readily identified from the
nature of the changes taking place in the phonon densities of states during an order-
disorder transition. In the ordered alloy, the very stiff nearest-neighbor bonds should
be associated with high frequency optical modes peaks. As the alloy disorders, the
height of these peaks should decrease since the number of stiff bonds decreases, This
characteristic signature of the “bond proportion” mechanism in the phonon DOS has
been repeatedly observed in experiments [49, 10].

49



ν

D
O
S

Ordered Disordered

Figure 2-3: The Volume Mechanism.

2.6.2 The volume effect

It is well known that vibrational entropy of a given compound varies with volume:
this dependence is responsible for thermal expansion. It is thus expected that the
volume change that typically occurs during solid-state transitions should also result
in a change in vibrational entropy. As the alloy expands (or contracts), as a result
of a change in its state of order, the stiffness of all chemical bonds decreases (or in-
creases). The resulting change in vibrational entropy is entirely due to anharmonicity,
in contrast to the “bond proportion” effect. In the limit of a “pure” volume effect,
the spatial distribution of the stiffness of each bond is inconsequential: The state of
order of the alloy influences its vibrational entropy only through a change in over-
all volume. When the volume mechanism operates alone, the phonon DOS should
exhibit an overall shift when the volume changes (See Figure 2-3).

This shift is usually accompanied by a change in the shape of the phonon DOS,
so that visual inspection of the phonon DOS is usually not sufficient to identify
the effect of volume. Theoretical investigations of this effect thus rely on a simple
thought experiment consisting in separating the vibrational entropy change upon
disordering at constant volume from the vibrational entropy change resulting solely
from the volume expansion of the disordered state. In this fashion, the importance of
volume changes was first observed in embedded atom method (EAM) calculations of
disordering reaction of the Ni3Al and Cu3Au compounds [2] and later corroborated
by subsequent EAM calculations on the Ni3Al compound [8, 115]. These more recent
calculations also found that the volume effect is magnified by the fact that the linear
thermal expansion coefficient of different phases can differ substantially (by about
5× 10−6 K−1 relative to an absolute value of about 15× 10−6 K−1). First-principles
calculations on the Cu-Au system [106] revealed a similar finding. In contrast, first-
principles calculations on the Ni3Al [136] and Pd3V [137] compounds found only a
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small difference between the thermal expansion coefficients of the ordered and the
disordered phases (less than 1× 10−6 K−1).
Even though the temperature-dependence of vibrational entropy can be large, it

is important to keep in mind that a given vibrational entropy difference arising from
anharmonic contributions has a smaller impact on the vibrational free energy than
a harmonic contribution of the same magnitude. The reason is that anharmonic
contributions to the vibrational entropy are always partly cancelled by anharmonic
contributions to the vibrational enthalpy. In contrast, such cancellation does not
occur for harmonic contributions.18 In its simplest form, the quasiharmonic approxi-
mation predicts that anharmonic contribution have exactly half the effect of harmonic
contributions (see [106] or Appendix A.2).
Experimental measurements have not identified the volume mechanism as a ma-

jor source of entropy differences since the simple thought experiment that allows its
identification in calculations cannot be performed experimentally. The effect of ther-
mal expansion on the phonon DOS, however, is clearly seen experimentally [98, 97],
due to the fact that thermal expansion causes shifts in the phonon DOS that are not
accompanied by substantial changes in its shape. Measurements on Ni3V [98], Co3V
[97] and Cu3Au [21] all show that anharmonic contributions are not negligible.

2.6.3 The size mismatch effect

The third advocated source of vibrational entropy changes is the effect of atomic
size mismatch. When atoms of different sizes are constrained to coexist on a lattice,
the atoms can experience compressive (or tensile) stress that results in locally stiffer
(or softer) regions. When large atoms sit on neighboring lattice sites, the amplitude
of their vibrations is reduced, i.e., the alloy tends to be locally stiffer. Conversely,
when small atoms sit on neighboring lattice sites, the extra room available results in
a locally softer region.
The phenomenon was first noted in EAM calculations on the Cu3Au compound

[2], where, in the disordered state, the presence of highly compressed pairs of Au
atoms lowers the vibrational entropy of the disordered state. A similar effect was
found in first-principles calculations on Ni3Al [136], where very compressed pairs of
Al atoms where found in the disordered state. In first-principles calculations on Pd3V,
an even more intriguing size-related effect was observed: all three types of chemical
bonds have incompatible equilibrium lengths and the vibrational entropy changes can
be explained solely by the large relaxations of the atoms away from their ideal lattice
sites in the disordered state.

18A temperature-dependence of vibrational entropy necessarily introduces a temperature-
dependence of the vibrational enthalpy, as a consequence of the following thermodynamic relation:
∂Hvib
∂T = T ∂Svib∂T .The anharmonic vibrational free energy is then a sum of two competing contribu-
tions: Fvib = Hvib − TSvib. In contrast, harmonic contributions to the vibrational enthalpy are
configuration-independent in the high-temperature limit, by the equipartition theorem, and give no
net contribution to vibrational free energy differences. Vibrational entropy differences originating
from harmonic contributions thus enter the expression for vibrational free energy differences directly,
without any partial cancellation from the enthalpic term.
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In the experimental literature, the size mismatch effect has been described with
the help of a stiff sphere picture first introduced in an investigation of the Cu3Au
compound [95]. The fundamental intuition behind this picture is that a chemical
bond becomes stiffer when the two bonded atoms have touching atomic “spheres”.
Further evidence for this stiff sphere picture was provided by a systematic analysis
of the vibrational entropy of formation of various L12 compounds [20], which shows
a correlation with the difference in radii between the two alloyed species.

2.7 Controlled approximations

The basic formalisms presented in Section 2.2.1 and 2.4.1 provide two natural ways
to control the trade-off between accuracy and computational requirements. In the
context of alloy theory (Section 2.2.1), the range of the effective clusters interac-
tions included in the cluster expansion controls how accurately the configurational
dependence of vibrational properties is modeled. In the context of the harmonic
(or quasiharmonic) treatment of lattice vibrations (Section 2.4.1), the range of the
force constants included in the Born-von Kármán model controls the accuracy of the
calculated vibrational properties for a given configuration. In principle, any desired
accuracy can be reached, given sufficient computing power, by increasing the range
of the interactions in both the cluster expansion and the Born-von Kármán models.
This section seeks to answer the important question of how far these two ranges of
interactions need to be pushed in order to reach the accuracy required in a typical
phase diagram calculation.

2.7.1 Short-range force constant

The evidence that spring models including only short-range force constants are able
to correctly model vibrational quantities comes from various sources.

First and second nearest neighbor spring model are routinely used to fit data ob-
tained from neutron scattering measurement of phonon dispersion curves [49, 95]. In
the theoretical literature, there have been direct studies of the convergence as a func-
tion of the range of interaction considered. All ab-initio studies find that short-range
force constants (first or second nearest neighbor) permit an accurate determination of
thermodynamical quantities in metals [136, 137] and group IV semiconductors [55].
It is important to note that this rapid convergence of most thermodynamic quantities
occurs even when the pointwise convergence rate of the phonon DOS is slow. As
noted before, this property arises from the fact that thermodynamic quantities are
averages taken over all phonon modes and errors tend to average out.

In ionic systems, the presence of long-range electrostatic interactions may require
long-range force constants. However, this electrostatic effect can easily be modeled
using pair potentials at a moderate computational cost. Once the forces predicted
from a simple electrostatic model have been subtracted, the residual forces should be
parameterizable with a short-range spring model.
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Some of the ab-initio studies of convergence have suggested additional simplifica-
tions to force constant tensors [55, 137]: instead of attempting to compute all force
constants in each tensor, is it possible to obtain reliable results by keeping only the
largest terms. We now present a hierarchy of approximations that is a formalization
of these findings.
To obtain a more intuitive representation of a given force constant tensor Φαβ (i, j),

we express it in a basis such that the first cartesian axis is aligned along the line joining
atom i and j. The second axis is then taken along the highest symmetry direction
orthogonal to the first axis while the third axis is chosen so obtain a right handed
orthogonal coordinate system.
In the absence of symmetry, the most general force constant tensor has 9 inde-

pendent elements. The first simplification, is to neglect the three body terms in the
harmonic model of the energy (e.g. (xα (i)− xα (j)) (xβ (i)− xβ (k)) with α 6= β).
Physically, such terms arise from the deformation of the electronic cloud surrounding
atom i that is caused by moving atom j and that affect the force acting on atom k.
Clearly, for any force constant other than the nearest neighbor, this effect is negligi-
bly small. Even for nearest neighbor tensors, it is the most natural contribution to
neglect first. In can be readily shown that a solid consisting only of pairwise harmonic
interaction, the tensor associated with a pair of atoms is symmetric:

Φαβ (i, j) = Φβα (i, j) .

(This constraint is distinct from the conventional constraint: Φαβ (i, j) = Φβα (j, i) .)
The elements of the force constant tensor can be ranked in decreasing order of

expected magnitude based on three simple assumptions:

1. Force constants associated with stretching a bond are larger than the ones
associated with bending it.

2. Terms relating orthogonal forces and displacements are smaller than those re-
lating parallel forces and displacements.

3. In the plane perpendicular to the bond, the anisotropy in the force constants is
smaller than the magnitude of the force constants themselves.

We then obtain

Φ (i, j) =


 a d+ e d− e

d+ e b+ c f
d− e f b− c




with

a > b > c > d > e > f.

This hierarchy of force constants is important to keep in mind, given that the off-
diagonal elements of the spring tensors are the most difficult to obtain from supercell
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calculations, requiring much bigger supercells than diagonal elements. There is evi-
dence [137] that even keeping only the stretching (a) and isotropic bending (b) terms
of the nearest neighbor spring tensor can provide an accuracy of about 0.03 kB. If this
observation turns out to be generally applicable, this offers a simple way to account
for vibrational effects in phase diagram calculations.

2.7.2 Short-range effective cluster interactions

If a cluster expansion of the vibrational free energy only requires a small number
of ECI to accurately model the configurational-dependence of the vibrational free
energy, it then becomes practical to determine the values of these ECI from a small
number of very accurate calculations of the vibrational free energy of a few structures.
The issue of the speed of convergence of the cluster expansion is also related to the

task of devising efficient ways to compute vibrational properties of disordered alloys:
The faster the cluster expansion converges, the easier it is to model a disordered
phase (see Appendix A.3). The calculations of the vibrational entropy change upon
disordering has proven to be a very effective way to assess the importance of lattice
vibrations [8, 115, 136, 137], since this quantity can be straightforwardly used to
estimate the effect of lattice vibrations on transition temperatures with the help of
Equation (2.4).
The central question is thus whether the cluster expansion of the vibrational free

energy converges quickly with respect to the number of ECI. This is a question distinct
from the range of force constants needed to obtain accurate vibrational properties.
The range of ECI needed to represent the configurational dependence of vibrational
free energy may very well exceed the range of the force constants. Even in simple
Born von Kármán model systems, there is no direct correspondence between ECI
and force constants, except in special cases (see Section 2.8.1). Once relaxations are
introduced in the model, then all hope of a simple correspondence is lost [90].
In this context, the question of the existence of a rapidly converging cluster ex-

pansion of vibrational properties has to be answered through numerical experiments.
Simple energy models offer the possibility to test, at a reasonable computational cost,
the speed of convergence of a cluster expansion. Explicit calculations of a well con-
verged cluster expansion of vibrational entropy in a Lennard-Jones solid [54] have
indicated that a small number of ECI (9) can provide a good accuracy (±0.03kB).
Other benchmarks of the speed of convergence, based on studies of disordered alloys
[46, 90, 89, 91], also indicate that concise and accurate cluster expansions are pos-
sible. Experiments that seek to link features of projected phonon DOS to the local
chemical environment of the atoms [52] suggest that short-range ECI should be able
to successfully model vibrational entropy differences. One potential source of concern
is the difficulty associated with accounting for the size mismatch effect using a short-
range ECI [90, 137]. In the context of cluster expansions of the energy, relaxations
of the atoms away from their ideal lattice site as a result of size mismatch are known
to introduce both non negligible long range pair ECI and numerous multiplet ECI.
A cluster expansion of the vibrational free energy is expected to exhibit the same
problems.
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All the full phonon DOS ab-initio calculations of vibrational entropies in alloy
systems performed so far have relied on the rapid convergence of the cluster expansion
[55, 129, 136, 106, 137]. While efforts to quantify the error introduced by truncating
the cluster expansion in ab-initio calculations have been made [55, 136, 137], the issue
of the speed of convergence of the cluster expansion in the context of vibrational
properties clearly merits further study, especially in light of the importance of the
size mismatch effect [137].

2.8 Models of lattice vibrations

While the ability to control the level of approximation discussed in the previous sec-
tion is extremely useful, there remains the problem that, very often, only considering
the first few levels in this hierarchy of approximations already involves substantial
computational requirements. For this reason, models of lattice vibrations that in-
volve fewer parameters but more physical intuition may provide a practical mean of
including vibrational effects in phase diagram calculations. In this section, we will
present the advantages and weaknesses of each method, in light of the three funda-
mental mechanisms described in the Section 2.6.

2.8.1 The “bond proportion” model

There have been many attempts (see, for instance, [42, 144, 14, 53]) to find ways to
express the relationship between the vibrational free energy and the dynamical matrix
in a form that illustrates the intuition behind the “bond proportion” mechanism. For
simple nearest-neighbor spring models with central forces, in linear chains [14, 82, 53],
square [14] or simple cubic lattices [141], a convenient exact expression can be derived
for the nearest neighbor ECI in the expansion of the vibrational free energy in the
high temperature limit:

V1nn =
d

8
kBT ln

(
kAAkBB

k2AB

)
. (2.14)

where kAA, kBB and kAB are, respectively, the spring constants associated with A−A,
B−B and A−B bonds and d is the dimensionality of the system. It has been noted,
on the basis of numerical experiments, that the same expression performs well for
other lattices [53]. This success arises from the fact that, as shown in Appendix
A.5, Equation (2.14) is the first order approximation to the true vibrational entropy
change in a large class of systems which satisfies the following assumptions:

• the high temperature limit of the vibrational entropy is appropriate;

• the nearest-neighbor force constants can be written as Φ (i, j) = kσiσj φ (i, j)
where kσiσj denotes the (scalar) stiffness of the spring connecting sites i and j
with occupations σi and σj while the φ (i, j) are dimensionless spring constant
tensors. The φ (i, j) are assumed equivalent under a symmetry operation of the
space group of the parent lattice;
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• all force constants kσiσj are such that∣∣∣∣∣ kσiσj√
kσiσikσjσj

− 1

∣∣∣∣∣� 1. (2.15)

Equation (2.14) applies to simple harmonic models with nearest neighbor springs
on the fcc, bcc or sc primitive lattices (and, approximately, on the hcp lattice), as long
as the above assumptions are satisfied. Both stretching and bending terms are allowed
in the spring tensors, as long as their relative magnitude is independent of kσiσj (e.g.
when the bending terms are always, say, 10% of the corresponding stretching term,
regardless of the magnitude of the stretching term). Why focus only on stretching
and bending terms, even though the spring tensor associated with a pair of atoms can
contain up to 9 independent terms? The “bond proportion” picture requires every
bond of a certain type (for instance, A − A bonds) to be have an identical spring
tensor. However, the point symmetry of each bond can be different and similar
chemical bonds in different environment face different symmetry-induced constraints
on their spring tensors [123]. The only way to reconcile these observations is use a
spring tensor that is compatible with the highest possible symmetry, ensuring that
it is also compatible with any other environment with a lower symmetry With the
highest possible symmetry, only two independent terms remain in the spring tensor:
the stretching and bending terms.

Equation (2.14) embodies the essential intuition behind the effect of the alloy’s
state of order on its vibrational free energy in the bond proportion approximation.
When one replaces a A − A bond and a B − B bond by two A − B bonds, the
vibrational free energy will decrease only if the stiffness of A−B bonds, kAB, exceeds
the geometrical average stiffness of the bonds between identical species

√
kAAkBB.

This observation allows the determination of the expected effect of vibrations on
the shape of the phase diagram by simple arguments. The link between the nearest
neighbor ECI of the expansion of the vibrational entropy can be summarized by the
expression [54]:

T config+vibc

T configc

=
1

1∓ αV1nn/kBT

where the “−” and “+” correspond to ordering and segregating systems, respectively,
and where α is a dimensionless parameter that only depends on the lattice type and
the ordering tendency of the system (for instance, for fcc, α = 1.7 in ordering systems
and α = 9.8 in segregating systems, while for bcc, α = 6.5 in both cases).

It is very simple to include vibrational effects in phase diagram calculations using
the “bond proportion” model. All that is needed is an estimate of the stiffness of
A − A, B − B and A − B bonds, which could come, for instance, from supercell
calculations of the nearest neighbor force constants in a few simple structures or
from the bulk moduli of the pure elements and one ordered compound. The nearest
neighbor ECI then obtained can be simply added to the cluster expansion of the
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energy.

While Equation (2.14) is useful to estimate the importance of the “bond pro-
portion” mechanism in a given system, one can avoid some of the approximations
involved in deriving Equation (2.14) at the expense of only a modest amount of addi-
tional computing power. One can find the exact phonon DOS of the nearest neighbor
Born-von Kármán model for a variety of configurations of the alloy, which allows a
more accurate cluster expansion of the vibrational energy to be derived. In this fash-
ion, the condition specified in Equation (2.15) is no longer needed and the vibrational
entropy can be calculated at any temperature.

It is important to keep in mind that two important assumptions are made when
invoking the “bond proportion” mechanism. First, vibrational entropies are solely
determined by the nearest neighbor force constants. There is theoretical evidence
that nearest neighbor spring models can predict vibrational entropy differences with
an accuracy of about 0.02kB in metallic [136, 137] and semiconductor [55] systems.
Given that configurational entropy differences are typically of the order of 0.5kB, this
precision should be sufficient for practical phase diagram calculations.

The second assumption is that each type of chemical bond is assumed to have an
intrinsic stiffness that is independent of its environment. First-principles calculations
on the Li-Al [123] and on the Pd-V system [137] unfortunately indicate that the stiff-
ness of a chemical bond does change substantially as a function of its environment.
This problem is serious, as it considerably limits the applicability of the “bond pro-
portion” model. These changes of the intrinsic stiffness of the bonds as a function
of their environment are precisely the focus of the two other suggested sources of
vibrational entropy changes. In summary, while the “bond proportion” model gives
an elegant description of one of the mechanisms suggested to be at the origin of vibra-
tional entropy differences, it completely ignores the two other mechanisms, namely,
the volume and size mismatch effects.

2.8.2 The Debye model

Perhaps the most widespread approximation to the phonon DOS g(ν) is the Debye
model [58], where the phonon problem is solved in the acoustic limit. In this case,
the phonon DOS is approximated by:

g (ν) =

{
9ν2

ν3D
if ν ≤ νD

0 if ν > νD

where νD =
kBΘD
h
and ΘD is the Debye temperature, given by:

ΘD =
h

kB

(
3N

4πV

)1/3
CD
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where CD is the Debye sound velocity, defined by

3

C3D
=

〈
3∑
λ=1

1

C3λ

〉

where the right-hand side is the directional average of a function of the three sound
velocities Cλ [58]. The free energy of a Debye solid is given by:

F

N
=

E∗

N
+
9

8
kBΘD − kBT

(
D

(
ΘD
T

)
− 3 ln

(
1− exp

(
−
ΘD
T

)))

≈
E∗

N
+ 3kBT ln

(
kΘD
h

)
in the high temperature limit.

where the Debye function D (u) is given by

D (u) = 3u3
∫ u
0

x4ex

(ex − 1)2
dx

Since the Debye sound velocity CD is a complicated function of all elastic con-
stants of the material, an approximation to the Debye temperature that only involves
the bulk modulus proves extremely useful. Such an approximation was derived by
Moruzzi, Janak and Schwarz (MJS) [92] for cubic materials19:

ΘD = 0.617

(
3

4π

)1/3
h

kB

(
Ω1/3B

M

)1/2

where Ω is the average atomic volume B is the bulk modulus and M is the concen-
tration weighted arithmetic mean of the atomic masses. As noted in [53], in the high
temperature limit, the MJS model does not exhibit the property that the masses
have no effect on the vibrational free energy of formation, although using a geometric
average of the masses [54] fixes this problem.

The quasiharmonic approximation can be used, within Debye theory, to account
for mild anharmonicity. In the so-called Debye-Grüneisen approximation, the volume-
dependence of the phonon DOS is modeled by a single Grüneisen parameter and the
effect of volume can be summarized by simply making the Debye temperature volume-
dependent:

ΘD = ΘD,0

(
V0
V

)γ
.

where ΘD,0 is the Debye temperature at volume V0 and γ is the grüneisen parameter.

Despite of its inaccurate description of the true phonon DOS at high frequencies,
the Debye and Debye-Grüneisen models are quite successful at modeling the changes

19although it has been used for materials with a lower symmetry [13, 120]
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in vibrational properties of a given compound as a function of temperature. For
instance, the thermal properties of pure metals [92] calculated in MJS approximation
are surprisingly accurate. The reason for this success is that the distinctive trends of
most thermodynamic quantities occur at low temperature, where the low frequency
phonon modes that are correctly described by the Debye model have a dominant
effect. In the high temperature regime, thermodynamic quantities are determined
by the classical equipartition theorem, and any harmonic model gives the correct
behavior.
Debye-like models are expected to perform well in systems where the differences

in vibrational free energy between compounds can be explained by uniform shifts of
the phonon DOS, such as when the volume effect operates alone. Such a behavior has
been observed in Embedded Atom calculations on the Ni–Al system [2, 8, 115] but in
no other systems so far. The MJS approximation has been used to include vibrational
effects in phase diagram calculations and has resulted in an improved agreement with
experimental results [13, 120, 34].
However, as shown in [54], the Debye approximation and its successors can have

significant shortcomings when used to calculate phase diagrams. A significant part
of the vibrational free energy differences between different compounds arises from
changes in the high frequency portion of the phonon DOS, which Debye-like models
describe incorrectly. In some cases, the MJS approximation can even lead to an
incorrect prediction of the sign of the vibrational entropy difference [137, 106].
In summary, the Debye model and its derivatives capture the essential physics

behind only one of the advocated mechanisms responsible for the configurational
dependence of vibrational free energy: the volume effect. Approximations based on
the Debye model, however, fail to account for the possibility that the state of order
also has a direct impact on the shape of the phonon DOS (as predicted, for instance,
by the “bond proportion” model), especially in the high frequency portion of the
phonon DOS.

2.8.3 The Einstein model

At the other extreme of the spectrum is the Einstein approximation, which focuses
on the high frequency region of the phonon DOS and therefore has the potential of
better representing the effect of the state of order on vibrational entropy [53].
The Einstein model can be combined with a Debye model to better fit experimen-

tal calorimetry data [10] or thermal expansion data [93]. The Einstein model, also
called the local harmonic model [78, 128], has proven especially useful to calculate
vibrational entropies associated with defects [146, 99, 128].
In quantitative theoretical calculations, this model may not have many appli-

cations, because determining unknown parameters of an Einstein model from first-
principles is as difficult as obtaining force constants, which would allow for a more
precise description of the DOS to be used instead.
The Einstein model is nevertheless extremely useful for conceptual purposes, as

we will now illustrate. As shown in Appendix A.4, the vibrational free energy of a
system is bounded by above and by below by the free energy of two Einstein-like
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systems:

kBT

2
ln

(
h

kBT

∏
i

Mi
((
Φ−1

)
ii

)−1)
≤ Fvib ≤

kBT

2
ln

(
h

kBT

∏
i

MiΦii

)

While the upper bound is obtained from the usual Einstein model, where surrounding
atoms do not relax, the lower bound is obtained when the surrounding atoms are
allowed to relax freely. Another way to interpret these bound is that at one extreme,
each atom sees the others as having an infinite mass, while at the other extreme,
each atom sees the other atoms as being massless. This result supports the view that
vibrational free energy can be meaningfully considered as a measure of the average
stiffness of each atom’s local environment.
A more rigorous way of defining the contribution of an atom to the total vibra-

tional free energy is the use of the projected DOS (also called partial DOS). This
approach does not in any way simplify the calculation of vibrational properties, be-
cause the full phonon DOS is needed as an input, but it is a useful way to interpret
the experimentally measured or calculated phonon DOS. To obtain the contribution
of atom i to the DOS, the idea is to weight each normal mode by the magnitude of
the vibration of atom i:

gi (ν) =
1

N

∑
j

|ej (i)|
2 δ (ν − νi)

where ej is the eigenvector (normalized to unit length) associated with the mode
of frequency νj . Since extensive thermodynamic properties are linear in the DOS,
atom-specific local thermodynamic properties can be readily defined from the pro-
jected DOS. Note that, by construction, all the projected DOS sum up to the true
phonon DOS and thus, all the local extensive thermodynamic quantities sum up to
the corresponding total quantity.

2.8.4 The “stiffness vs. length” approach

In ab-initio calculations, most of the computational burden comes from the calcu-
lation of the force constant tensors. It would thus be extremely helpful if the force
constants determined in one structure could be used to predict force constants in
another structure. From the failures of the “bond proportion” model, however, we
know that forces constants obtained from one structure are not directly transferable
to another structure [123, 137]
Nevertheless, a simple modification of the transferable force constant approach

yields substantial improvements in precision. First-principles calculation the Pd-V
[137] system revealed that most of the variation in the stiffness of a given chemical
bond across different structures can be explained by changes in bond length.20 This

20The results obtained in the Li-Al system [123] also suggest than length is a good predictor of
stiffness, although this matter was not further investigated.
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Compound (Structure) “Stiffness vs. Length” Model 1nn Spring Model
Pd3V L12 -4.39 -4.39
Pd3V D022 -4.42 -4.47
Pd3V SQS-8 -4.56 -4.54
Ni3Al L12 -5.57 -5.55
Ni3Al SQS-8 -5.54 -5.57

Table 2.5: Comparison Between Vibrational Entropies Obtained from the “Stiffness
vs. Length” Model and from a First Nearest Neighbor Spring Model.

suggests that the transferable quantity to consider is a “bond stiffness” vs. “bond
length” relationship. As a first approximation, a linear relationship can be used

a (l) = a0 + a1 (l − l0)

b (l) = b0 + b1 (l − l0)

where a and b denote the stretching and isotropic bending terms, respectively and
where a0 and b0 describe the stiffness of the bond at its ideal length l0 while a1 and
b1 are analogous to bond-specific Grüneisen parameters.

This approximation was shown to be successful in the Pd-V system [137]. Figure
3-2 illustrates the ability of this simple model to predict bond stiffness in different
structures. A similar analysis performed with the data on the Ni-Al system from
Reference [136] is shown in Figure 3-10. Table 2.5 compares the predictions obtained
from the “stiffness vs. length” model with more accurate calculations.

There are numerous advantages to this approach. From conceptual point of view,
this model presents a concise way to summarize all three mechanism suggested to be
the source of vibrational entropy differences. The “bond proportion” mechanism is the
particular case obtained when little changes in bond length occur. The volume effect
results from expanding all bonds by the same factor. The size mismatch effect (or
the “stiff sphere” picture) is also modeled since the local change in stiffness resulting
from locally compressed or expanded regions are explicitly taken into account. A
straightforward way to represent the source of vibrational changes is to overlap the
bond stiffness vs. bond length relationship and the changes in average length and
stiffness in different states of order, as shown in Figure 3-4.

A second advantage of this method is computational efficiency. The unknown
parameters of the model can be determined by a small number of supercell or linear
response calculations. After that, the knowledge of the relaxed geometry of a structure
is sufficient to determine the stiffness of all chemical bonds. Finding the vibrational
entropy of the structure then just reduces to a computationally inexpensive Born-von
Kármán phonon problem with nearest-neighbor force constants. It is important to
note that the knowledge of the relaxed geometries of a set of structures is a natural
by-product of first-principles calculations of structural energies, which are needed
to construct the cluster expansion of the energy in any phase diagram calculations,
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whether vibrational effects are included or not. Since computational requirements
do not grow rapidly with the number of structures considered, this opens the way
for a much more accurate representation of the configurational-dependence of the
vibrational free energy.

An third advantage of transferable stiffness vs. length relationships is that they
contain all the information needed to account for thermal expansion as well, within
the quasi-harmonic approximation. The slopes of the stiffness vs. length relationships
for each chemical bonds explicitly defines the changes in phonon frequencies as volume
changes. Since the bulk modulus of each structure is also a by-product of structural
energy calculations, all the ingredients needed for a quasi-harmonic treatment of
thermal expansion are available.

2.9 Conclusion

The standard framework of alloy theory can be straightforwardly extended to account
for lattice vibrations using the concept of coarse-graining of the partition function.
Once the degrees of freedom associated with lattice vibrations are integrated out,
one is left with a standard Ising model, where the energy of each spin configuration
is replaced by its vibrational free energy. The efficient evaluation of the vibrational
free energy of each configuration is the main problem limiting the inclusion of lattice
vibrations in phase diagram calculations. A number of investigations have sought to
assess the importance of vibrational effects on phase stability, in order to ensure that
the efforts involved in computing vibrational properties are justified. The conclusion
of the most reliable of these studies is that vibrational entropy differences are typically
on the order of 0.1 kB ot 0.2 kB, which is comparable to the magnitude of configura-
tional entropy differences (at most 0.69 kB), thereby indicating that vibrations have
a nonnegligible impact.

The calculation of the vibrational free energy of any configuration of the alloy
reduces to the well known phonon problem in crystals. While the standard harmonic
treatment of this problem lacks the ability to model thermal expansion, which can
have a significant impact on thermodynamic properties in alloys, this limitation is
easily overcome with the help of the quasiharmonic model. An exact solution to the
phonon problem for all possible configurations requires excessive computing power.
However, the tradeoff between accuracy and computational requirements can be con-
trolled in two ways, namely through the selection of the range of force constants in
the Born-von Kármán model, and through a choice of the number of ECI included in
the cluster expansion describing the energetics of the Ising model. While there is evi-
dence that the range of force constants can be kept very small (first nearest neighbor
springs), the configurational dependence of the vibrational free energy is too complex
to permit a drastic reduction in the number of ECI.

The main mechanisms that explain the trends in vibrational entropy differences
between phases that have been suggested in the literature can be conveniently sum-
marized with the ”bond stiffness vs. bond length” model. In this picture, each type
of chemical bond is characterized by a length-dependent spring constant. Changes in
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vibrational entropy can originate from both changes in the proportion of each chem-
ical bond and changes in their lengths as a result of local and global relaxations.
This model not only provides an intuitive understanding of lattice vibrations in al-
loys, but also a practical way of including their effects in face diagram calculations.
This stiffness vs. length relationship of each type of chemical bond can be inferred
from a small number of lattice dynamics calculations. The vibrational properties of
any configuration can then be obtained at a very low computational cost from the
knowledge of the equilibrium geometry of this configuration, an information that is
already a natural by-product of any phase diagram calculation.
There have so far been very few accurate phase diagram calculations that include

the effect of lattice vibrations.The main limitation remains the determination of a
cluster expansion that accurately models the configurational dependence of vibra-
tional free energy. The ”bond length vs. bond stiffness” model should prove to be an
extremely useful tool in achieving this goal. Although this approximation has been
very successful in all systems to which it has been applied, the confirmation of its
validity in a wider range of systems is crucial.
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Chapter 3

First-principles calculations of
vibrational entropy

3.1 Introduction

Prior to this thesis, two mechanisms were commonly invoked to explain the configura-
tional-dependence of vibrational entropy, namely, the “bond-proportion” and the vol-
ume effect. In this chapter, we intend to show that these two pictures are insufficient
to correctly describe the coupling between an alloy’s state of order and its vibrational
entropy. This demonstration consists in performing accurate ab initio calculations of
the vibrational change upon disordering in specific alloy systems and in identifying
the source of the vibrational change through carefully designed thought experiments.
The alloys systems chosen, the Pd-V and the Ni-Al systems, offer a unique opportu-
nity to check the applicability of the “bond-proportion” and the volume mechanisms.
Each of the two systems is expected to be a nearly ideal example of one of the two
mechanisms.
The Ni-Al system is expected to exhibit a strong volume effect because of the

large size mismatch (13%1) between the two species. In fact, Ni-Al is the system for
which the volume mechanism was first introduced [2]. This importance of the volume
effect was also found in subsequent semi-empirical calculations [8, 115] on the Ni-Al
system.
In contrast, the Pd-V system appears an ideal “bond-proportion” system, for two

reasons. First, the size mismatch between Pd and V is small (4%2) Second, Pd-V
bonds are expected to exhibit a stiffness that exceeds the average stiffness of Pd-
Pd and V-V bonds. The latter can be deduced from the characteristic trend of the
bulk modulus of transition metals across the periodic table: Early transition metals
are soft because their bonding orbitals are only partially filled. Stiffness reaches a
maximum when the bonding orbitals are full and then decreases as the anti-bonding
orbitals fill up. Pd and V are at each end of the transition metal section of the

1Determined by comparing the experimental lattice parameters of fcc Ni and fcc Al.
2This number was obtained by comparing first-principles calculations of the lattice parameters

of fcc Pd and of V, artificially constrained to be in an fcc structure as well.
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periodic table and are thus rather soft. When they are alloyed, the average number
of valence electrons per atom is such that the bonding orbitals are closer to their
optimal filling, suggesting that the stiffness of a Pd-V bond should be larger than the
average stiffness of Pd-Pd and V-V bonds. (Note that since pure Pd is significantly
stiffer than pure V, a Pd-V bond can still be softer than a Pd-Pd bond.)

The remainder of this chapter is organized as follows. We first describe the tech-
niques used before discussing, in turn, the Pd-V and the Ni-Al systems.

3.2 Methodology

3.2.1 Theory

As described in the previous Chapter, in the harmonic approximation, the vibrational
entropy of a structure can be obtained from the phonon density of states [81] g(ν).
Above the Debye temperature of the solid, the high temperature limit is quickly
reached and this dependence reduces to:

Svib = −3kB (1 + ln (kBT ))− kB

∫ ∞
0

ln (ν) g(ν)dν. (3.1)

Since the first term is structure-independent, it has no effect on phase stability and will
be ignored in the following analysis. The high-temperature limit is a good indicator
of how large the effect of vibrations is likely to be in a given system, as vibrational
entropy reaches its maximum in the high temperature limit. All vibrational entropies
reported in this Chapter are calculated in the high-temperature limit.

The harmonic approximation can be made more realistic by allowing the phonon
frequencies to be volume-dependent. This approach, called the quasi-harmonic ap-
proximation [81], enables the calculation of thermal expansion as well as its impact
on the vibrational entropy. Once the volume-dependence of energy, E(V ), and vi-
brational entropy, Svib(V ), are known, the equilibrium volume at temperature T is
found by minimizing the free energy F = E(V )− TSvib(V ) with respect to V . This
technique has been used in previous computational investigations of the vibrational
entropy [8, 106]. The accuracy of the quasi-harmonic approximation has been inves-
tigated in [46, 89]. Its accuracy was found to be excellent at temperature up to about
the Debye temperature. At higher temperatures, its accuracy decreases and typically
leads to a systematic overestimation of the thermal expansion. In this context, our
results based on the quasi-harmonic approximation should be interpreted as an upper
bound on the effect of thermal expansion.

Note that when thermal expansion is accounted for, the quantity −kB
∫∞
0
ln (ν)

g(ν)dν in Equation (3.1) becomes temperature-dependent, due to the change in vol-
ume. In the two systems considered here, this temperature-dependence is found to
be small. For this reason, we will usually report high-temperature limiting values as
a single temperature-independent quantity. However, one should not a priori expect
this to be the case in all systems (see [8, 115, 106]).
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3.2.2 Ab Initio calculations

The phonon density of states of an ordered compound can be accurately calculated
through a variety of first-principles methods. Either the linear response technique
[57, 40] or the fitting of a Born-von Kármán spring model to forces obtained from ab
initio calculations [55, 143] can be used. The large computational requirements of the
linear response technique limit its use to very symmetric small-cell structures. Since
we will need to study structures with relatively large supercells and low symmetry,
we rely instead on the fitting of spring constants to ab initio calculations of the forces
acting on the atoms when they are perturbed away from their equilibrium positions.

Our ab initio calculations are performed within the local density approximation
(LDA) using the VASP [75, 74] package which implements ultra-soft [139] pseudopo-
tentials [113]. The precision of the quantum mechanical calculations used to deter-
mine the force constants is controlled by a variety of parameters. In the software
package used, the electronic wavefunctions are represented by a linear combination
of plane waves. As the number of planes waves is increased, the precision of the cal-
culations increase because the wavefunctions can be represented more accurately. A
convenient way to describe the number of plane waves used is to specify the so-called
“energy cutoff”, which is simply the kinetic energy of the plane waves having the
shortest wavelength. There are essentially two types of error associated with the use
of an insufficient number of plane waves First, the calculated energies and forces
will obviously be contaminated by a random noise. Second, there is the problem of
the “Pulay stress”, which is a systematic bias of the calculated stress acting on the
unit cell. Since the Pulay stress results in systematic errors in the calculated stress,
the calculated equilibrium volume of the crystal will be biased as well. Since phonon
frequencies are very sensitive to volume, this problem can introduce a systematic bias
in the calculated vibrational properties. For this reason, a high cutoff was used when
determining the equilibrium geometry of the structures (see Table 3.1). But once the
equilibrium geometry is known, the cutoff can be safely reduced when computing the
reaction forces acting on all atoms as one atom is moved away from its equilibrium
position. The bias in the stress has essentially no impact on the forces acting on each
atom. This technique achieves substantial savings in computer time since, for each
structure, the equilibrium geometry has to be determined only once, while many force
calculations are needed in order to determine all the force constants.

The second important parameter controlling the precision of the calculations, is
the number of k-points used to sample the Brillouin zone. This parameter controls
how accurately the band structure of the material is represented. It is important
to note that as a structure’s unit cell increases in size, the Brillouin zone is corre-
spondingly reduced so that less k-points are needed to accurately represent the band
structure. A convenient way to report the number of k-points used in a set of similar
calculations with different unit cells is to specify the number of k-point by reciprocal
atom, as done in Table (3.1).

How are the energy cutoffs and the number of k-points determined? The reaction
forces in a simple test structure are calculated. Each parameter controlling the pre-
cision is gradually increased until it has essentially no effect on the calculated forces,
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Parameter Ni-Al Pd-V
Energy cutoff for relaxations 400 eV 365 eV

Energy cutoff for force calculations 241 eV 211 eV
Number of k-points (14)3/(atom−1) (14)3/(atom−1)

Table 3.1: Parameters Used in the First-Principles Calculations.

yielding what can be considered as an “exact” result. By comparison with this “ex-
act” result, one can see for which values of the cutoff and k-point parameters the
precision of the calculated forces is sufficient to obtain the desired accuracy in the
vibrational entropy. In order to map the desired level of precision in the vibrational
entropy onto a required precision in the forces, we use the following rule.3

|δSvib|

N
≤
3

2
kBmax

j

∣∣∣∣δfjfj
∣∣∣∣ .

where maxj

∣∣∣ δfjfj
∣∣∣ is the maximum fractional error on the calculated forces.

In our calculations, we have required the forces to differ by no more than 0.5%
from the “exact” value, which should be sufficient to obtain vibrational entropies with
a precision of the order of 0.007kB.

3.2.3 The disordered state

While the calculation of the vibrational properties of the ordered state is straight-
forward, the case of a disordered alloy presents numerous difficulties associated with
large computational requirements. The most direct way to model the disordered state

3This rule can be derived as follows. In the high-temperature limit,

Svib

N
=
kB

N

3N∑
i=1

ln
√
λi + constant

where the λi are the eigenvalues of the 3N × 3N dynamical matrix of the system. We can the write

δSvib

N
=
1

2

kB

N

3N∑
i=1

(
δλi

λi

)

=
3

2
kB

〈
δλi

λi

〉
.

If all the calculated forces fj were shifted by the same fraction
δf
f
, the resulting eigenvalues would

also be shifted by the same fraction. While the errors in the forces tend to random rather than
systematic, assuming them to be systematic provides a convenient upper bound on the errors:

|δSvib|

N
≤
3

2
kB max

j

∣∣∣∣δfjfj
∣∣∣∣ .
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Structure p1 p2 t111 t112 t113 t114
L12 0 1 1/2 -1/2 1/2 -1/2
D022 0 2/3 1/2 -1/6 1/6 1/6

|L12 −DO22| 0 1/3 0 1/3 1/3 2/3
SQS-8 1/4 1/3 -1/4 0 -1/12 -1/6
Random 1/4 1/4 -1/8 -1/8 -1/8 -1/8

|SQS-8−Random| 0 1/12 1/8 1/8 1/24 1/24

Table 3.2: Correlations of the Structures Used. pn denotes the n-th nearest neighbor
correlation while tlmn denotes a triplet made of overlapping pl, pm, and pn pairs.

is to rely on a large supercell calculation where the occupation of the lattice sites is
randomly chosen. Unfortunately, both the linear response and the spring constant
fitting approaches become impractical for very large supercells.
A computationally efficient way to model the disordered state is to rely on a so-

called Special Quasirandom Structure [151] (SQS). A SQS is the periodic structure
that best approximates the disordered state in a unit cell of a given size. The SQS
approach has been used very successfully to obtain electronic and thermodynamic
properties of disordered materials (see, for example, [63]). The accuracy of the SQS
approach has been benchmarked using the embedded atoms potentials, which allow
the computation of the vibrational entropy of a large supercell simulating the disor-
dered state.[90] An SQS having only 8 atoms in its unit cell was found to already
provide a good approximation of the disordered state for the purpose of calculating
vibrational properties.
The quality of a SQS is described by the range within which the correlations ρα

between the occupation of different lattice sites mimics the ones of the disordered
state. For an fcc lattice at concentration 3/4, the 8-atom SQS shown in Figure 3-1a)
is able to reproduce the nearest-neighbor pair correlation of the disordered state ex-
actly. Other longer-range and multi-body statistical correlations are approximately
reproduced, as shown in Table 3.2. The magnitude of the errors introduced by the ap-
proximation of these other correlations can be estimated by computing the vibrational
entropy of different structures which have the same nearest-neighbor correlation, but
different longer-range and multi-body correlations. On the fcc lattice at concentration
3/4, the two simplest structures that have this property are the L12 and the DO22
structures. If the vibrational entropy of the L12 and the DO22 structures differ by
an amount ∆SL12→DO22, the difference between the 8 atom SQS and the true disor-
dered state is expected to be half as much, since their longer-range and multi-body
correlations are more similar, as shown in Table 3.2. Table 3.3 reports ∆SL12→DO22vib

in both the Ni-Al and Pd-V systems, along with the corresponding estimate of the
error introduced by the SQS approximation.

3.2.4 Force constants calculations

The force constants of a Born-von Kármán model are determined through the proce-
dure described in Section 2.4.1. Each distinct atom is, in turn, displaced away from
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Pd-V Pd-Pd

b)a)

Figure 3-1: a) 8-Atom SQS Used to Model the Disordered State. (Primitive unit
cell shown.) b) Constraints on Bond Lengths Originating from the Symmetry of the
Ordered D022 structure. (Conventional cell shown.) Bonds represented by identical
line styles have identical lengths.

System ∆SL12→DO22vib ∆SSQS−8→randomvib

Ni-Al 0.04kB ±0.02kB
Pd-V 0.08kB ±0.04kB

Table 3.3: Differences in Vibrational Entropy Between the L12 and the D022 Struc-
tures in the Ni-Al and Pd-V Systems. Also shown is the implied precision of the SQS
approximation.
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its equilibrium position and resulting forces on all atoms are calculated from first
principles. This information can then be used in a least square fitting procedure to
find the spring constants that best predicts the forces acting on each atom. This
procedure is controlled by numerous parameters that need to be chosen to maximize
the precision of the calculated force constants at a reasonable computational cost.

The first parameter is the magnitude of the atomic displacements. If the displace-
ments are chosen too small, the inaccuracies in the calculated forces will be large
relative to the forces themselves and the overall precision of the procedure will de-
crease. If the displacements are chosen too large, the anharmonicity of the potential
surface will affect the precision of the harmonic force constants. In order to find the
best balance between these two effects, we need two pieces of information: the preci-
sion of the forces ∆f and the magnitude of the anharmonicity. While the precision
of the forces ∆f is known (from the study of the convergence with respect to the
energy cutoff and the number of k-points performed in Section 3.2.2), an estimate of
the anharmonicity can be obtained from the following analysis. We select one type
of atomic displacement as a test case and try different magnitude of displacements x.
We then fit the resulting forces f to a polynomial:

f = a2x+ a3x
2 + a4x

3.

Since the third order term a3x
2 is easily be cancelled by considering positive and

negative displacements, we focus on the error introduced by the fourth order term
a4x

3. The precision of the vibrational entropy depends on the relative error on the
forces. Therefore, the optimal displacement can be found by minimizing

∆f + a4x
3

a2x

with respect to x. In both the Pd-V and Ni-Al systems, the optimal displacement
was found to be about 0.05 Å.

Another important parameter controlling the precision of the spring model is the
range of interactions considered. This parameter can be determined by gradually
including longer-range spring interactions until the value of vibrational entropy con-
verges. The study of the convergence of the vibrational entropy as a function of the
range of springs considered, shown in Table 3.4, reveals that, in the Ni-Al system,
even a first nearest neighbor spring model already gives us an accuracy of 0.025kB.
In the Pd-V system, the convergence of the absolute value of vibrational entropy is
much slower (see Table 3.5). Fortunately, we are interested in vibrational entropy
differences, whose convergence is much quicker. Table 3.5 shows that a nearest neigh-
bor spring model is able to provide vibrational entropy differences with an accuracy
of about 0.02kB. In the event that this rapid convergence of vibrational entropy
differences is fortuitous and unique to the L12 and D022 structures, the speed of con-
vergence of the absolute vibrational entropies, rather than their differences, should
be used as a measure of precision. Although this pessimistic estimate is of the order
of 0.1kB, our results remain conclusive in the presence of an error of this magnitude.

71



Structure 1st NN Shell 2nd NN Shell 3rd NN Shell
L12 -5.550 -5.576 -5.575
SQS-8 -5.569

Table 3.4: Vibrational Entropy (in kB) as a Function of the Number of Nearest
Neighbor (NN) Shell Included in the Born-von Kármán Model.

Structure 1 2 3
L12 -4.39 -4.44 -4.48
D022 -4.47 -4.53 -4.58
SQS-8 -4.54

L12−D022 0.08 0.08 0.10
SQS-8−D022 -0.07

Table 3.5: Vibrational Entropy (in kB) as a Function of the Interaction Range In-
cluded in the Spring Model. Range is expressed as the number of nearest neighbor
shells.

The high accuracy of such a short-range spring model is not unusual: It has been
observed [55] that even though a long-range spring model is required to model all the
features of the phonon DOS, an integrated quantity such as the vibrational entropy
converges much faster with respect to the range of interaction included. We exploit
this fact to describe the disordered state, where longer ranged interactions would be
prohibitive to calculate, using nearest-neighbor spring constants only. Note that due
to the low symmetry of the SQS, a nearest-neighbor model still involves the evaluation
of 50 distinct parameters in the spring tensors.
Now that the computational techniques have been described, we are ready to

interpret the results of these calculations.

3.3 The Pd-V system

3.3.1 Results

Our main result is that the calculated vibrational entropy of the disordered state is
0.07kB lower than the one of the ordered state (D022 structure), as seen by comparing
the two numbers in bold in Table 3.5. This is in complete contradiction with the well-
known “bond proportion” mechanism which would predict a large and positive change
in vibrational entropy.
Before we discuss the origin of this unexpected result, a few remarks are in order.

Since the convergence rate of the vibrational entropy with respect to the range of
interaction is relatively slow in Pd3V, we compare the vibrational entropy between two
spring models having the same range of interactions, in order to ensure the maximum
amount of cancellation of any potential systematic errors. It is also important to
note that even using the most pessimistic estimate of the precision of our approach
(0.1kB), the vibrational entropy change upon disordering is no larger than 0.03kB,
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Quantity Units D022 SQS-8
Bulk Modulus GPa 215 191
Atomic Volume Å3/atom 13.808 13.891
Average Grüneisen parameter 2.41 2.24
Linear Thermal Expansion Coef. 10−6K−1 11.2 11.6
Temperature-Dependence of Svib 10−6kB/(K atom) 243 234

Table 3.6: Calculated Properties of the Ordered (D022) and the Disordered State
(Approximated by an 8 Atom SQS). Bulk modulus and volume are given at 0K while
the other quantities are the high-temperature limiting values.

which is small compared to typical vibrational entropy changes, which are of the order
of 0.1kB.

A quasi-harmonic treatment enables the evaluation of the temperature-dependence
of this entropy difference. While the temperature dependence of the vibrational en-
tropy is large in both the ordered and the disordered state (see Table 3.6), they are
almost identical and have little impact on phase stability. This identity is remarkable:
the ordered and disordered materials have a different bulk modulus and a different
Grüneisen parameter (see Table 3.6), but these two differences offset one another.

Another unexpected finding is that the bulk modulus of the disordered state is
smaller than that of the ordered state, which is in apparent contradiction with our
claim that the disordered state is “stiffer” than the ordered state. However, one must
keep in mind that vibrational entropy depends on the average stiffness of all possible
vibrational modes, while bulk modulus measures the stiffness of only one mode. The
Pd-V system thus provides an example where estimates of the vibrational entropy
based on bulk modulus, such as the Debye-Grüneisen model [92], can be misleading.

3.3.2 Discussion

The fact that the vibrational entropy change upon disordering does not have the sign
that one would expect for an ordering system merits further analysis. This section
demonstrates that the origin of this surprising result can be traced back to the effect
of local relaxations. We first present a simple model that allows us to isolate the
origin of the vibrational entropy differences in this system. We then introduce a
precise mechanism that is able to explain our results before proceeding to show that
this particular mechanism is indeed at work in Pd3V.

Consider a simplified spring model obtained by including only stretching and bend-
ing terms in the first nearest-neighbor spring tensors. These terms can be read from
the diagonal elements of the spring tensor associated with a given pair of atoms, when
this tensor is represented in a cartesian basis with one axis aligned along the segment
joining the two atoms in question. In addition, the bending terms are constrained
to be orientation-independent. The resulting tensor contains only two independent
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Structure 1(len) 1(sb) 1
L12 -4.39 -4.40 -4.39
D022 -4.42 -4.48 -4.47
SQS-8 -4.56 -4.53 -4.54

L12−D022 0.03 0.08 0.08
SQS-8−D022 -0.14 -0.05 -0.07

Table 3.7: Vibrational Entropy (in kB) Obtained with Various First Nearest Neighbor
Spring Models. The full spring tensors is used in Column 1. Only stretching and
bending terms are included for the column labeled 1(sb) while the column labeled
1(len) presents the results of a model where bond stiffness is only allowed to depend
on bond length only (see text).

spring constants, a stretching term s and a bending term b:
 −s 0 0
0 −b 0
0 0 −b


 .

The error introduced by this approximation (relative to using the full first nearest-
neighbor tensor) never exceeds 0.01kB for all fcc structures tested (see Table 3.7,
columns 1(sb) and 1.). In these calculations, the simplified spring model is applied
to the fully relaxed geometries, as determined from ab-initio calculations. Note that
keeping only stretching terms would be an oversimplification, as it can result in errors
comparable in magnitude to the typical values of the vibrational entropy of formation
(±0.2kB). These errors are non-systematic and do not cancel out when taking entropy
differences.

This simple spring model is useful from a conceptual point of view, as it lets us
compare the stiffness a given type of bonds (e.g. Pd-Pd, V-V or Pd-V) in different
structures: the spring tensors have the same form regardless of the symmetry of the
bonds’ environment. Figure 3-2 shows the values of the stretching (s) and bending
(b) terms of the spring tensor of bonds of various lengths taken from a set of fcc-
based structures (L12, D022, SQS-8, fcc Pd and fcc V, each taken at two different
volumes). Bond stiffness correlates reasonably well with bond length, as seen by the
least squares fit shown in Figure 3-2. Bond stiffness typically decreases with bond
length. The fact that the same relationship between bond stiffness and length holds
throughout different structures is a important feature that will leads us to a simple
mechanism explaining our results for the Pd-V system. While both the stretching and
bending terms are important to consider for quantitative purposes, the magnitude of
the stretching term only provides a convenient measure of a bond’s stiffness for the
purpose of the following qualitative discussion.

We argued earlier that a Pd-V bond resembles a bond between two elements of the
middle of the transition metal series, which typically have a larger stiffness. However,
elements in the middle of the transition metal series are also characterized by smaller
lattice constants. One would then expect Pd-V bonds to be shorter than the average
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Bond Length (Å) Stiffness (eV/Å2)
Pd-Pd 2.743 3.06
V-V 2.763 0.69

Average 2.753 1.45
Pd-V 2.628 2.21

Table 3.8: Average Bond Length and Bond Stiffness (Along the Stretching Direction)
in the Disordered State. The row labeled “average” reports the arithmetic average of
the length of Pd-Pd and V-V bonds and the geometric average of their stiffness

Bond Length (Å) Stiffness (eV/Å2)
V-Pd 2.693 0.61
Pd-Pd 2.693 3.44

Table 3.9: Average Bond Length and Bond Stiffness (Along the Stretching Direction)
in the Ordered State.

length of V-V and Pd-Pd bonds. As shown in Table 3.8, the average bond length and
stiffness in the disordered state are in perfect agreement with this picture. Note that,
while Pd-V bonds are stiffer than the average stiffness of Pd-Pd and V-V bonds, as
expected, Pd-V bonds are nevertheless softer than Pd-Pd bonds.

The situation is quite different in the ordered state: the high symmetry of the
structure constrains the Pd-V bonds to have the same length as the Pd-Pd bonds
(see Figure 3-1b)). The average bond length tends to be much closer to the Pd-Pd
“ideal” length than to the Pd-V “ideal” length because Pd-Pd bonds are stiffer than
Pd-V bonds. The result is an ordered alloy where Pd-V bonds are significantly longer
than they would be in the absence of symmetry constraints while the Pd-Pd bond
lengths are only slightly affected. Pd-V bonds are therefore unusually soft in the
ordered state, while the stiffness of Pd-Pd bonds is nearly unaffected. This tends to
makes the ordered state softer and is responsible for its higher vibrational entropy.
The average bond length and stiffness in the ordered state shown in Table 3.9 support
this interpretation.

The fact that disordering shortens the Pd-V bond while leaving the Pd-Pd bonds
mostly unchanged on average can be seen from the histogram of the bond length
distribution (Figure 3-3). The impact of these bond length changes on stiffness is
best illustrated by plotting the change in average bond length and stiffness upon
disordering, as illustrated in Figure 3-4. The dramatic stiffening of the Pd-V bonds
and the slight softening of the Pd-Pd bonds in the disordered state, relative to the
ordered state, is clearly visible.

Static displacements of this magnitude should be visible in diffuse scattering mea-
surements. Such measurements have been performed in Pd3V [124] and in a related
system, Pt3V [22]. One of the authors of reference [124] (F. Ducastelle) has indicated
to us that the more precise measurements made on Pt3V should give us a reliable
upper bound on the magnitude of the static displacements in disordered Pd3V, where
the determination of the static displacements was less precise. We will thus compare
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our results with the Pt3V measurements only.
As the scattering factor of V is much smaller than the one of Pt, it is difficult

to measure shifts in the Pt-V and V-V bond lengths. Unfortunately, these are pre-
cisely the bonds we predict to be the most affected by disordering. The experimental
nearest neighbor average Pt-Pt bond length shift is reported to be 0.3% of the lattice
parameter, which is somewhat smaller than ours (1.2% of the lattice parameter). This
discrepancy can be easily explained by the fact that we model disordered Pd3V as
a perfectly disordered material, while disordered Pd3V actually exhibits short-range
order. Fully disordered Pd3V is naturally expected to exhibit larger relaxations. Note
that the presence of short-range order does not invalidate our discussion. In the pres-
ence of short-range order, both the traditional ‘bond proportion’ mechanism and the
effect of relaxations will decrease in importance, but they would still give rise to com-
peting and comparable contributions to the vibrational entropy change, which is our
main observation. As such, existing experimental observations do not contradict our
findings. Unfortunately, the most salient feature of our predicted static displacements,
the shortening of Pd-V bonds, has not yet been confirmed experimentally.
Perhaps the easiest way to separate the effect of the “bond proportion” mech-

anism from the effect of relaxations is to construct a model system where bonds
always have the opportunity to reach their “ideal” length, regardless of the symme-
try of their local environment. The average stretching and bending force constants
obtained in the disordered state, listed in Table 3.8, are used as an approximation
to the “true” force constants that would be expected in the absence of symmetry
constraints. These force constants are used to calculate the vibrational entropy for
both the ordered DO22 and SQS-8 structures. The vibrational entropy change upon
disordering then becomes 0.26kB, which is large and positive, as expected when the
“bond proportion” mechanism operates alone. The large configurational dependence
of vibrational entropy provided by the “bond proportion” mechanism is thus entirely
masked by relaxation effects to yield vibrational entropy difference of −0.07kB.
While the above model system is useful for illustrative purposes, we have to verify

that the difference between 0.26kB and −0.07kB can really entirely be attributed to
the effect of relaxations. For instance, this difference includes the error introduced by
replacing each bond’s force constants by average force constants. Vibrational entropy
is not a linear function of the force constants, and averaging the latter could bias
the former. Moreover, bond stiffness could vary for reasons other than bond length
change: for example, the local charge density in the neighborhood of a given bond
could vary. For these reasons, we now introduce a model system which (1) does not
rely on averaged force constants and (2) only accounts for bond stiffness change due
to bond length changes.
To show that the effect of relaxations alone can explain our results, we make use

of the “bond stiffness vs. bond length” model. We replace the true stiffness of each
bond by the one predicted from bond length through a simple least squares fit (shown
in Figure 3-2). While this simplified model exhibits a limited accuracy (see column
1(len) of Table 3.7), it is clearly able to predict that the vibrational entropy of the
disordered state is lower than the one of the ordered state. In the simplified model,
a bond’s stiffness is uniquely determined by its type (Pd-Pd, Pd-V or V-V) and its
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length. Variations in bond stiffness that are not due to bond length are ignored,
leaving only relaxations as the possible source of the higher stiffness of the disordered
state.

It is worth noting that our suggestion of defining bond characteristics that are
transferable (i.e. applicable to different structures) bears some resemblance to an
earlier attempt to define transferable “configuration averaged force constants” (CA
FC) [123]. However, our approach differs in three important respects. First, we keep
only stretching and bending terms in the spring tensors, thus avoiding the incompat-
ibilities in the form of the spring tensor when the symmetry environment of a bond
differs in distinct structures. Second, we do not try to define a universal bond-specific
stiffness but instead define a universal stiffness versus length relationship. The stiff-
ness of a bond is thus allowed to vary in different structures when its length varies.
Finally, we do not attempt to define force constants that also predict the correct equi-
librium geometry of a structure. In a typical ab- initio phase diagram calculation, the
exact equilibrium geometry is already known, as it is a byproduct of the calculation
of the energy of a given structure.

3.3.3 Conclusion

The ordering tendency of the Pd-V system would indicate that Pd-V bonds should be
stiff relative to Pd-Pd and V-V bonds. Based on this observation, one would expect
the vibrational entropy change upon disordering to be large and positive. Instead,
our calculations indicate a negative vibrational entropy change. The origin of this
surprising result lies in the fact that the Pd-V bonds are stiffer only when they are
allowed to relax to their short “ideal” length, which can happen in the disordered
state but not in the ordered state, due to symmetry constraints. The stiffening of
the Pd-V bonds in the disordered state more than compensates for the fact that
there are less Pd-V bonds in the disordered state. The larger stiffness of the disor-
dered state translates into a vibrational entropy that is lower than the one of the
ordered state. We prove that this mechanism indeed determines the observed sign
of the vibrational entropy change upon disordering through two model systems. In
one system, we entirely remove the effect of relaxations and find that the vibrational
entropy change now has the positive sign typically expected in a ordering system. In
a second model system, we only include bond stiffness changes that can be associ-
ated with bond length changes and find that the vibrational entropy decreases upon
disordering, in agreement with the results of our more accurate calculations. These
two results unambiguously show that relaxations play an essential role in determining
vibrational entropy changes in the Pd-V system. These results also illustrate both
the inadequacies of the “bond proportion” picture and the predictive power of the
“bond stiffness vs. bond length” model.

79



3.4 The Ni-Al system

3.4.1 Background

The Ni3Al compound is of “historical” importance in the study of lattice vibration
in alloys. It was the first system where the vibrational entropy change associated
with a disordering reaction was directly measured experimentally. It was also the
first direct experimental evidence that the thermodynamic effect of vibrational exci-
tations can be comparable in magnitude to the effect of configurational excitations:
the vibrational entropy difference was estimated to be about 0.2kB [49, 11] whereas
the configurational entropy difference can be at most 0.57kB. This finding attracted
the attention of alloy theorists and many theoretical calculations of the vibrational
entropy of disordering of the Ni3Al compound followed [2, 8, 115]. To keep computa-
tional requirements in control, these calculations of the vibrational entropy difference
between disordered and ordered Ni3Al (hereafter denoted ∆S

o→d
vib ) were performed us-

ing the semi-empirical Embedded Atom Method (EAM) [38]. Although the specific
result seemed to depend somewhat on the EAM potential used, all authors found
values between 0.1kB and 0.3kB, which corresponded to the range of values found
experimentally.
Although the value of ∆So→dvib calculated through EAM agrees with experimental

results, there is no consensus on the origin of this difference. The EAM results
indicate that disordering causes a nearly uniform softening of all phonon modes due
to an increase in volume. On the other hand, it has been argued from neutron
scattering experiments [49] that the vibrational entropy increase is mainly due to a
significant decrease of the number of high frequency vibrational modes. Surprisingly,
the samples used to measure vibrational entropy differences even exhibited a decrease
in lattice constant upon disordering, in contrast to the EAM results.
Some EAM investigations [115] found that a large fraction of ∆So→dvib is due to

thermal expansion differences between the ordered and the disordered state, while
experiments [11, 49], as well as some theoretical investigations [2], obtained a large
∆So→dvib without considering this effect. Finally, recent EAM calculations [88] (which
update some of the results found in [8]) found essentially no contribution from thermal
expansion.
We will attempt to reconcile some of these conflicting observations through a first-

principles calculation of the difference in vibrational entropy between the ordered and
disordered state for the Ni3Al compound. We will also identify the precise mecha-
nism that determines the change in vibrational entropy upon disordering the Ni3Al
compound.

3.4.2 Results

Before addressing our main question, we assess the accuracy of our first principles cal-
culations by comparing various experimentally determined quantities with the results
of our calculations. Figure 3-5 compares the measured heat capacity of ordered Ni3Al
with the one calculated from first-principles. The agreement is very good below 1000
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Figure 3-5: Calculated and Experimental Heat Capacities (at Constant Pressure) as
a Function of Temperature.

K but apparently degrades quickly beyond that temperature. The reason for this
apparent discrepancy is simply that configurational excitations, which are purposely
ignored in our calculations, start to contribute significantly to the heat capacity at
high temperature [8]. The agreement between the calculated and measured thermal
expansion, shown in Figure 3-6, is even more striking.

Figure 3-7 shows how our calculated phonon DOS of the L12 structure compares
with experimental results [49]. Due to the fact that the Local Density Approximation
(LDA) systematically underestimates lattice constants, the calculated frequencies are
slightly too high. However, since a similar effect is present for both the ordered and
the disordered state, this bias is expected to mostly cancel out. A more satisfactory
solution to this problem will be presented in Chapter 4.

Calculated and Experimental Phonon DOS of the L12 Structures. The experi-
mental phonon DOS is calculated from the force constant provided in [49], which are
themselves fitted from previous phonon dispersion measurement [126].

We now turn our attention to our main finding. The results shown in Table
3.4.reveal that there is almost no difference in vibrational entropy between the or-
dered and the disordered state (0.006kB). This value is obtained by subtracting the
vibrational entropy of the ordered state obtained with a third nearest neighbor spring
model from the vibrational entropy of the disordered state obtained from a first near-
est neighbor spring model. An error bracket of ±0.05kB can be attributed to this
result by adding the uncertainties due to using only nearest neighbor springs for the
SQS (0.025kB) and due to using a SQS having only the correct nearest neighbor pair
correlations (0.02kB).

We do find a large temperature-dependence of Svib for both the ordered and the dis-
ordered states (about 2.4×10−4kB/K). However, since the difference in temperature-
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Quantity Units L12 SQS-8
Bulk Modulus GPa 204 179
Atomic Volume Å3/atom 10.627 10.680
Average Grüneisen parameter 2.07 1.94
Linear Thermal Expansion Coef. 10−6K−1 13.2 14.0
Temperature-Dependence of Svib 10−6kB/(K atom) 244.7 245.3

Table 3.10: Calculated Properties of the Ordered (L12) and the Disordered State
(Approximated by an 8 Atom SQS). Bulk modulus and volume are given at 0K while
the other quantities are the high-temperature limiting values.

dependence between the two states is very small (0± 1× 10−5kB/K), ∆So→dvib remains
small at all temperatures. This identity is remarkable: the ordered and disordered
materials have a different bulk modulus and a different Grüneisen parameter (see
Table 3.10), but these two differences precisely offset one another.

3.4.3 Discussion

How can we explain the apparent discrepancy between our findings (0.00 ± 0.05kB)
and results from inelastic neutron scattering [49] (from 0.1 to 0.3kB)? Although
this range of experimental results is often averaged to give 0.2kB, the true result is
probably closer to 0.1kB. The higher bound of 0.3kB was obtained using the virtual
crystal approximation to analyze the neutron scattering data of the disordered state,
while the lower bound of 0.1kB was obtained when the DOS of the disordered state
was assumed to resemble that of the ordered state. Recent EAM calculations [8, 115],
as well as our own results from the SQS calculations (see Figure 3-8), clearly show
the latter hypothesis to be the correct one: The DOS of the disordered state is
a broadened version of the DOS of the ordered state. The experimental result is
therefore likely to be close to the lower bound of 0.1kB. The remaining discrepancy
between our calculation and experiment can well be accounted for by other sources
of entropy in the experiment.
As Ni3Al is ordered up to the melting point, the metastable disordered phase of

Ni3Al needs to be produced by vapor deposition [61] or ball milling [66]. Both of
these methods produce a material with a very small grain size (respectively 4 nm [61]
and 7 nm [47]). When the samples are annealed to reach the ordered state, the grain
size inevitably increases. It follows that the ordered and disordered samples differ
not only by their state of order, but also by their grain size. Grain size can have
a significant effect on the thermodynamics of nanocrystalline materials. The latter
typically possess higher heat capacities than their coarse-grained counterparts due to
the large fraction of atoms lying in the grain boundary regions which are typically
softer [131, 47, 51]. For example, it has been observed that the vibrational entropy
difference between disordered Ni3Fe in its nanocrystalline (9 nm average grain size)
and coarse-grained form is about 0.18kB [47], which is of the same order of magnitude
as ∆So→dvib in Ni3Al.
This small grain size effect is visible in the vibrational DOS obtained through neu-
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Figure 3-8: Calculated Phonon DOS of the L12 and SQS-8 Structures.

tron scattering. It is responsible for the enhancement of the density of low frequency
phonon modes [49]. We obtain an estimate of this effect by integrating the experimen-
tally measured ln(ν)(go(ν)− gd(ν)) over the low frequency part of the DOS. To yield
a meaningful value, this integral has to be taken over a range of frequencies which
encloses the same number of modes for both the ordered and the disordered state.
From the data of Fultz et al. ([49], Figure 4), we obtain a low frequency contribution
of about 0.05kB by integrating from 0 to 22 meV. Frequencies above 22 meV provide
the remaining 0.05 kB attributable to the order-disorder transition. With this new
interpretation, the neutron scattering results now lie in between the EAM and the
ab-initio predictions.

In calorimetric measurements [11], grain size effects are expected to be even larger,
as the grain size was only 4 nm (about 20 atomic layers), compared to 7 nm in neu-
tron scattering experiments. This partly explains the larger value of the vibrational
entropy difference found with calorimetric measurements.

The effect of small grain size can also explain the disagreement between the cal-
culated and experimental lattice parameters. All calculations indicate that the dis-
ordered state has a larger volume than the ordered state (1%–2% larger with EAM,
0.5% larger with ab-initio). On the contrary, some experiments [49] (but not all: See
[26]) find that the ordered state has the largest lattice constant. The difference arises
from the fact that the lattice constant of nanocrystalline materials can often differ
by ±0.3% from their bulk counterparts [4, 149, 79]. This effect can dominate over
the volume expansion of the bulk material only if the latter is not too large. In this
sense, the small volume expansion upon disordering we obtain is more consistent with
experimental observations than the EAM results.

In summary, the large ∆So→dvib found in experiments can, in fact, be attributed to
a variety of parasitic effects that can very easily be avoided in ab initio calculations.
The large ∆So→dvib found in semi-empirical calculations is due to an overestimation of
the volume expansion upon disordering. The smaller volume expansion found in ab
initio calculations is much more consistent with experimental observations.
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Figure 3-9: Vibrational Entropy as a Function of Atomic Volume in the Ordered and
the Disordered States.

3.4.4 The origin of the small vibrational entropy change upon
disordering

While accurate ab initio calculations were helpful in reconciling a number of conflict-
ing observations we still need to understand the mechanisms that are responsible for
this small vibrational entropy change upon disordering. First-principles calculations
did predict a small increase in volume upon disordering and it is surprising that the
associated increase in vibrational entropy expected from the volume mechanism is
not observed.

One the of main advantages of first-principles calculations is the ability to perform
thought experiments that help to understand a phenomenon. This will help us to
settle the question of whether there is a volume effect in the Ni-Al system. The
required thought experiment is deceptively simple. First disorder the material at
constant volume, and then let it expand to its equilibrium volume. The changes in
vibrational entropy associated with this two-step transformation are illustrated in
Figure 3-9. In the second step, the expected vibrational entropy change expected
from the volume mechanism is indeed observed. However, part of this entropy gain
is cancelled by the decrease in vibrational entropy resulting from disordering the
material at constant volume. This decrease is puzzling because it is in contradiction
with the well-known “bond proportion” picture. The Ni-Al is a system with ordering
tendencies: Disordering at constant volume should reduce the number of stiff Ni-Al
bonds in favor of softer Ni-Ni and Al-Al bonds.

Just as in the Pd-V system, the effect of local relaxations resolves this apparent
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Average bond lengths (Å)
Bond L12 SQS-8 “Ideal”
Ni-Ni 2.468 2.550 2.425 (fcc Ni)
Ni-Al 2.468 2.444 2.463 (B2 NiAl)
Al-Al – 2.680 2.813 (fcc Al)

Average bond Stiffnesses (eV/Å2)
Bond L12 SQS-8 “Ideal”
Ni-Ni 2.827 1.718 3.017 (from fcc Ni)
Ni-Al 2.567 2.884 2.219 (from B2 NiAl)
Al-Al – 2.688 1.292 (from fcc Al)

Table 3.11: Average Bond Length and Bond Stiffness in the Ordered and Disordered
States. The “ideal” bond length and stiffness are taken from structures which possess
only one type of bond. Stiffness is defined as the spring constant associated with
stretching a bond.

paradox. Ni and Al atoms have a very different size and significant relaxations may
have to occur in order to allow them to coexist in a lattice. A very instructive way to
look at this problem is to analyze the length and the stiffnesses of each type of bond
in a structure where only one type of bond exists, so that nothing prevents this bond
from reaching its “ideal” length. The Al-Al and and Ni-Ni are obviously found in the
crystals of the corresponding pure elements, while the Al-Ni can be found in NiAl,
which adopts the CsCl structure where all nearest neighbor bonds are identical. As
seen in Table 3.11 the Ni-Ni and Ni-Al bonds have essentially the same “ideal” length.
In the ordered L12 phase, which only possess Ni-Al and Al-Al bonds, each bond is
essentially free to reach its “ideal” length. In the disordered state, the extremely long
Al-Al bonds undergo a significant reduction in length (relative to pure Al) and their
stiffness also correspondingly much higher than in pure Al.
In the thought experiment where the alloy is disordered at constant volume, the

Al-Al would have to adopt a length that is close to 2.468 Å, just like the Ni-Ni and Ni-
Al bonds. At that level of compression, the Al-Al would have stiffness4 of 4.9 eV/Å2.
Thus, at this volume, the Ni-Ni and Al-Al bonds would be stiffer than the Ni-Al bonds.
Disordering the alloy at constant volume therefore replaces the relatively soft Ni-Al
bonds by stiffer Ni-Ni and Al-Al bonds, and the vibrational entropy decreases. The
bond proportion model would incorrectly yield a increase in the vibrational entropy
because it incorrectly assumes that Al-Al bonds have a unique stiffness, regardless of
their lengths.
In order to show that bond length changes are really the key factor determining

vibrational entropy changes in alloy, we perform the same analysis as in the Pd-V

4From the data of Table 3.11, we have:

(Stiffness of Al-Al bond) ≈ 1.292 + (2.813− 2.468)
(2.688− 1.292)

(2.813− 2.680)
= 4.913
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system. We calculate the bond lengths and stiffnesses in a variety of structures and
obtain a stiffness vs. length relationship (see Figure 3-10) through a least square fit.5

This relationship is then used determine the bond stiffnesses in the L12 and the SQS-8
structures. The vibrational entropy difference obtained through this “bond stiffness
vs. bond length” model is 0.03kB, which is in good agreement with the results of the
more accurate calculations (±0.05kB).

3.5 Conclusion

The “bond proportion” and the volume mechanisms are clearly incapable of explain-
ing the changes in vibrational entropy taking place in the Pd-V and Ni-Al systems
when alloys undergo an order-disorder transition. The effect of local relaxations is so
significant that it dominates the contributions of either two effects. Fortunately, the
deviations from these two simplistic pictures can be very straightforwardly described
by the “bond length vs. bond stiffness” picture.
Our results thus suggest a way to construct “transferable” force constants that

would enable the calculation of the vibrational entropy of a large number of structures
without having to recalculate force constants from ab- initio calculations for each of
them. While the stiffness of a bond is unlikely to be transferable, the relationship
between stiffness and length for a given type of chemical bond is transferable. Such
transferable relationship can easily be determined by a fit to the force constants
calculated from first-principles in a small set of structures. The vibrational entropy
of any other structure could then be determined solely from the knowledge of its
equilibrium geometry, an information that is already a byproduct of any ab-initio
phase diagram calculation. This approach captures the essential physics determining
vibrational entropy differences in alloys and presents an extremely promising way to
include vibrational effects in phase diagram calculations at a moderate computational
cost.

5Because the bond length changes are very large in the Ni-Al system, we allow for both a linear
and quadratic dependence on bond length.
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Figure 3-10: Bond Stiffness as a Function of Bond Length in the Ni-Al System.
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Chapter 4

Correcting Overbinding in LDA
Calculations

4.1 Introduction

Over the last three decades, first-principles calculations based on the local density ap-
proximation (LDA) of density functional theory (DFT) [64, 71] have been extensively
used to successfully predict numerous materials properties [67]. While the LDA is
known to have many limitations, we will focus here on properties that can, in princi-
ple, be exactly determined by DFT. These include any properties that can be derived
from the knowledge of the electronic ground state energy for any given position of
the nuclei.

One significant limitation of LDA is its “overbinding” of extended solids: Lattice
parameters are typically underpredicted, while cohesive energies, phonon frequencies
and elastic moduli are typically overpredicted. In this chapter, our main concern will
be the biases in the equilibrium lattice constants, the phonon frequencies and the
elastic moduli.

The Generalized Gradient Approximation (GGA) (see Ref. [108] and references
therein), was introduced to address some of the weaknesses of the LDA. The GGA
has been clearly shown to improve agreement with experiments for properties of finite
systems such as atoms or molecules [108, 103]. However, the success of the GGA in
extended systems has been more controversial:[77, 68, 45] despite many successes,
[108, 105] GGA frequently overcorrects LDA’s overbinding, sometimes yielding worse
agreement with experiment than LDA. Obtaining accurate cohesive properties of
crystalline phases from first-principles calculations thus remains a problematic issue.

This chapter describes how LDA’s overbinding can be easily corrected for a large
class of materials, by using a small amount of experimental input to correct the results
of first-principles calculations. Our approach focuses on obtaining the correct equi-
librium volume and relies on the fact that this correction is sufficient to significantly
improve the accuracy of calculated elastic properties as well.

We start this chapter by giving a brief overview of Density Functional Theory.
The remaining of the chapter is organized as follows. We first motivate the use of
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the experimental equilibrium volume in LDA calculations and describe how LDA
calculations can be combined with experimental input to obtain accurate equilibrium
volumes. We then show, through the results of first-principle calculations, that errors
in the equilibrium volume follow a trend that can be easily corrected with the use of
a minimal amount of experimental input. We finally provide a formal explanation of
the success of this simple approach and discuss the implication of our findings for the
continuing search for better exchange-correlation functionals.

4.2 Density Functional Theory

Attempting to exactly solve the multibody Schrödinger equation of all the electrons
in a system would be hopeless. The number of quantum states to consider grows
exponentially with the number of particles and the resulting differential equations
become quickly intractable. Fortunately, the focus of alloy theory (and solid state
physics in general) is very often limited to determining the electronic ground state of
a system. At most temperatures of interest, the width of the Fermi-Dirac distribution
is small relative to the features of the electronic density of states in solid state systems
and the occupation of the electronic states can be approximated reasonably well by
a step function, which amounts to considering the system to be in its ground state.
The problem of finding the electronic ground state is a tremendously simpler task

than to enumerate all eigenstates of an electronic system. As shown by Hohem-
berg and Kohn, the total energy of a system is a functional1 of the electron density.
Minimizing this functional with respect to the charge density yields both the true
ground-state energy and its associated charge density. The advantage of such a for-
malism is that the charge density is a three dimensional object while the wavefunction
of the ground state is a 3N -dimensional object (in a N -electron system).
Kohn and Sham later showed that, for the purpose of finding the ground state

energy, the multi-electron system represented by the Schrödinger equation can be re-
placed by a set of noninteracting single-electron equations, where the sum of the
single-electron ground-state energies equal the ground-state total energy. In the
framework of the so-called density functional theory (DFT), the coupling between
the electrons are modeled by the adding an exchange-correlation potential term Vxc
to the Hamiltonian of the non-interacting system:(

−
˜2

2me
∇2 + V (r) + e2

∫
ρ (r′)

|r′ − r|
dr′ + Vxc [ρ]

)
ψi (r) = εiψi (r) (4.1)

where r and r′ are points in space, V (r) is the external potential applied to the
electron system, ρ(r) is the charge density, ψi(r is the eigenfunction of state i and εi
is its associated eigenvalue.2 is and e, me and ˜ are, respectively the electron charge,

1A functional is mapping from a function (here, the charge density) to a number (here, the
energy).
2In DFT, the eigenvalues of the Hamiltonian have no direct physical meaning: They cannot be

associated to the energy of eigenstate of the system.
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the electron mass and Planck’s constant.

Since this expression contains the charge density ρ(r), which is determined by the
wavefunctions ψ(r), Equation (4.1) has to be solved self-consistently. A trial charge
density is first used to find the wavefunctions using Equation (4.1). The resulting
wavefunctions are used the calculate a charge density:

ρ (r) =

N∑
i=1

|ψi (r)| (4.2)

where the sum is taken over the wavefunctions associated with the N lowest energy
states (where N is the number of electrons). This charge density is then fed into
Equation (4.1) and cycle is repeated until the desired level of accuracy is reached.

A nice feature of DFT is that, in principle, the exact exchange-correlation potential
can be expressed as a functional of the charge density only (and not of the wavefunc-
tions). The exact expression of Vxc(r) is not known and determining it (or, at least, an
accurate approximation of it) is one of the important challenges in solid-state physics.
The local density approximation (LDA) to the exchange-correlation potential is by
far the most commonly used. It consists in replacing the true exchange-correlation
potential at point r by the exchange correlation potential of homogeneous electron
gas of density ρ(r). This simple approximation introduces various biases in the calcu-
lated properties of materials. This chapter describes how one of LDA’s most obvious
bias, its systematic underestimation of the lattice parameter, can be alleviated.

4.3 Method

4.3.1 The Importance of Volume

It has been previously observed [125, 33, 148, 147, 35] that, in many compounds,
phonon frequencies calculated through first-principles are in closer agreement with
experiment when the lattice parameters are artificially constrained to the experimen-
tal values. To determine whether this is a general trend, we performed a systematic
investigation of the calculated bulk modulus in various elements, evaluated at the
experimental lattice parameter. Since biases in the bulk modulus are usually corre-
lated with biases in the phonon frequencies, investigating the bulk modulus provides
a computationally simple way to investigate the bias in elastic properties in a large
number of materials.

Figure 4-1 shows the result of our calculations, which will be described in detail in
a later section. Using the experimental volume appears to essentially correct the bias
in the calculated bulk modulus in a large class of materials. For all transition and
noble metals tested, a substantial improvement is observed. More importantly, the
magnitude of the correction is correlated with the magnitude of the error — indicating
that this is clearly not just a random correction in the right direction. Interestingly,
performing the same investigation with GGA shows that using the experimental vol-
ume for GGA calculations gives worse estimates of the bulk modulus than LDA at the
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Figure 4-1: Calculated versus Experimental Bulk Modulus of Selected Elements.
Evaluating the bulk modulus at the experimental volume considerably improves agree-
ment with experiment. (The data for W and Ta was provided by the authors of Ref.
[68].)

experimental volume (and also worse estimates than GGA at the GGA equilibrium
volume). For this reason, we will focus on correcting the LDA equilibrium volume
(instead of the GGA equilibrium volume).
Unfortunately, there are exceptions to this trend: for some elements, such as

alkali metals, aluminum and silicon, evaluating the bulk modulus through LDA at
the experimental lattice constant provides no improvement. The elements that appear
to cause problems are those that have a small bulk modulus.
Nevertheless, we can conclude that evaluating elastic properties with LDA at

the experimental volume provides significantly better agreement with experiment in
a large class of materials including transition metals as well as other compounds
studied by previous investigators. [125, 33, 148, 147, 35] A method of obtaining the
correct lattice parameters from LDA calculations with as little experimental input as
possible could therefore be extremely useful. This is the problem which we now turn
to.

4.3.2 Conceptual Framework

In this section, we will first introduce a simple one-parameter correction to the LDA
Hamiltonian of the system. This parameter is element dependent and can be tuned to
obtain the true equilibrium volume. Such an approach avoids the conceptual problem
associated with artificially fixing the volume without modeling the cause of the volume
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change. We then describe how the knowledge of this parameter for simple systems
enables us to extrapolate this parameter for systems where it is unknown. We finally
present how we tested the applicability of our method in a large number of systems.

Let us define a structure to be a specific stable or metastable periodic arrangement
of atoms of given types. Such a structure has well defined energy, equilibrium vol-
ume, elastic moduli and phonon frequencies. The fact that, in general, LDA correctly
models elastic properties at the experimental volume suggests the following approx-
imation for the total energy of a structure in the neighborhood of its equilibrium
geometry:

E = ELDA({ci} , aj) + ∆Exc(Ω)

where Ω is the average atomic volume, ELDA is the energy obtained using LDA, for
given atomic positions ci and lattice vectors aj , while ∆Exc is the correction intro-
duced to model the effect of the non-local contribution to the exchange-correlation
(which is not accounted for within LDA). The approximation introduced is to allow
∆Exc to depend on the average atomic volume only. This approximation rests on the
assumptions that LDA usually predicts reasonably accurate unit cell shapes (except
for an isotropic scaling factor) and phonon frequencies, when evaluated at the exper-
imental volume. If ∆Exc were strongly dependent on the cell shape, the LDA cell
shape would be significantly biased and if ∆Exc were strongly dependent on atomic
positions, the LDA would give incorrect estimates of the phonon frequencies.

We do not know ∆Exc and seek to approximate it with a truncated Taylor series.
Since we are interested in the equation of state in the neighborhood of the true
equilibrium volume, we expand ∆Exc in the neighborhood of the experimental volume
Ωexp:

E = ELDA({ci} , aj) + ∆Exc(Ωexp) + (4.3)

+
∂∆Exc(Ωexp)

∂Ω
(Ω− Ωexp).

The truncation of the Taylor series after the first order can be justified from the fact
that LDA seems to give accurate values of the bulk modulus when it is evaluated
at the experimental volume, as mentioned before. In structures having a small bulk
modulus, this assumption is more questionable, as the second order term is more likely
to be non-negligible compared to the second derivative of ELDA. This is probably the
source of the inaccuracies in the bulk modulus we observed in soft elements.

While the term ∆Exc(Ωexp) may have an influence on cohesive energies, it leaves
the equilibrium volume as well as elastic properties unaffected. We will thus focus on
the quantity ∂∆Exc(Ωexp)

∂Ω
which has a direct impact on the equilibrium volume. It can

be interpreted as the pressure that needs to be applied to the LDA solid so that its
volume equals the experimental volume. This pressure, hereafter called the non-local
exchange-correlation pressure (Pxc), is expected to be structure-dependent and we
now turn to the problem of determining this pressure for a given structure using the
minimum amount of experimental input.
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The value of Pxc for each element, in its crystalline form, significantly changes from
one element to the next. Elements that have large charge density inhomogeneities,
like 3d metals, require a large corrective pressure while free-electron-like metals, such
as alkali metals or aluminum, require a small pressure. It is often stated that LDA
performs poorly in the case of alkali metals, since it significantly underpredicts their
equilibrium volume. But the magnitude of the error introduced by the LDA, in terms
of energy per unit volume (as measured by Pxc), is actually small. This small error
in the energy translates into a large volume change only because alkali metals have
such a low bulk modulus.
Obviously, using one Pxc per element, one can obtain the correct equilibrium

volume for all elements. It is now interesting to check whether the value of Pxc
in elements can help predict the value of Pxc in compounds. Remarkably, we have
observed that taking the concentration-weighted average of Pxc of each element in the
compound provides a simple and effective method to predict Pxc in a compound.
Since we are linearly interpolating the non-local exchange-correlation pressure,

this naturally raises the following question: Why not linearly interpolate either the
volume or the lattice parameter instead? The answer is that compounds that have the
same composition can have slightly different volumes. For example, alloys typically
expand by a fraction of a percent upon disordering. These volume relaxations are
energetically significant and have an important impact on phonon frequencies [2,
136, 8] and mixing energies. Usually, LDA correctly predicts these relative volume
changes and preventing them (by fixing the volume) would neglect an effect that
LDA is actually able to model. Moreover, applying a pressure instead of fixing the
volume has a firmer conceptual basis: Applying a pressure corresponds to introducing
a perturbation to the Hamiltonian which causes a volume change. Fixing the volume
imposes a volume change without modeling its cause.

4.3.3 Calculations

In order to benchmark this approach of linearly interpolating Pxc, we compute Pxc
for a large number of compounds and compare it to the pressure interpolated from
the Pxc of elements. The value Pxc can be determined by artificially constraining the
volume to the experimental value and by calculating the pressure acting on the unit
cell. For crystals of non-cubic symmetry, the cell shape is allowed to relax (at constant
volume) until the pressure is isotropic. In all cases, we allow the internal degrees of
freedom (i.e. the atom positions) to relax. This relaxation step is introduced so that
the pressure is calculated in the same conditions as those in which it would be used,
that is, without prior knowledge of cell shape and atomic positions.
The experimental volume used must be the one at absolute zero temperature.

This is achieved by taking the experimental volume at room temperature (or higher)
listed in Refs. [107, 102] and extrapolating it down to absolute zero using the thermal
expansion data found in Ref. [130]. For intermetallics for which the thermal expansion
down to absolute zero has not been determined experimentally, we use a concentration
weighted average of the values of the pure elements. For compounds that exhibit
an allotropic or a magnetic transformation between the temperature at which the
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volume is measured and absolute zero, we approximate the thermal expansion of
the high-temperature phase at low temperature by the thermal expansion of the
low-temperature phase and disregard the volume change taking place at the phase
transition. Note that, in most compounds, these corrections are quite small (typically
0.2% change in the lattice constant) compared to the LDA error (1% to 2%). Hence,
any inaccuracies in these extrapolations have a small impact on our results. In fact,
calculations at the room temperature volume exhibit essentially the same behavior.
Our calculations are performed with the VASP [75, 74] package which uses ultra-

soft [139] pseudopotentials [113] and a plane-wave basis. The equilibrium volume can
be sensitive to the quality of the pseudopotentials used. We thus verified that the
equilibrium lattice constants we obtain do not differ significantly 3 from previous full-
electron calculations in elements [68, 105, 108, 45]. The energy cut-off used ranges
from 200 eV to 360 eV depending on the elements present in the structure. For ultra-
soft pseudopotentials, these cut-offs are largely sufficient to obtain pressures with a
precision of about 1% for transition metals and simple metals. To minimize the effect
of Pulay stress, calculations are performed at a sequence of various volumes ranging
from −18% to +12% around the experimental volume, at a constant energy cut-off.
At each volume, all degrees of freedom are fully relaxed and the resulting energies
are fitted to a polynomial of degree 4. The resulting equation of state is then used to
obtain the quantities of interest. The Brillouin zone is sampled using Monkhorst-Pack
special points and integrated with the help of the tetrahedron method with Bloech
corrections. 4 For all structures, the total number of k-points in the Brillouin zone
is chosen to be around (15)3 divided by the number of atoms in the unit cell. LDA
calculations relied on the Ceperley-Alder exchange-correlation [29], as parametrized
by Perdew and Zunger [109], while GGA calculations relied on the Perdew-Wang
’91 functional [108]. In all calculations, the same exchange-correlation functional
is used for both the pseudopotential generation step and the actual calculations.
Scalar-relativistic effects are accounted for in the pseudopotential. Non-spin polarized
calculations are used for all compounds which are paramagnetic at room temperature.
Spin-polarized calculations are used for metallic nickel, the only magnetic compound
considered here.

4.4 Results

We choose binary systems where the number of well characterized phases is suffi-
ciently large to provide a stringent test of the linear dependence of Pxc on concen-
tration. Systems exhibiting intermetallic phases are ideal tests for our method, as
the known structures are well characterized experimentally and have small unit cells,
which makes calculations easily tractable.

3Lattice constants of Ag, Al (LDA), Au, Cu, Na, Ni, Pd, Pt, Si, and V differed by less that 0.6%.
Lattice constant of Ti (LDA and GGA) and Al (GGA) differed by about 1%.
4For relaxation steps the Methfessel-Paxton smearing method of order 1 with a width of 0.1 eV

is used instead, to avoid the problem that accurate forces cannot be obtained with the tetrahedron
method.
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The non-local exchange-correlation pressures for all the intermetallic phases tested
are shown in Figure 4-2. In this figure, the accuracy of the volume determined with
the help of an exchange-correlation pressure relative to the LDA volume can be noted
by observing that the data points are much closer to the interpolating line than to the
zero axis. It is remarkable that the linear relationship holds even when the phases do
not share a common parent lattice. 5 In particular, the different crystalline structures
of titanium exhibit almost the same Pxc. This is also the case with lithium, whose
hcp and bcc phases have a non-local exchange-correlation pressure of -1.48 GPa and
-1.39 GPa, respectively.

The same linear relationship appears to hold for ionic and covalent solids as well,
as shown in Figures 4-3 and 4-4. While the agreement is less satisfactory in the case
of alkali halides, our method still reduces LDA’s error on the equilibrium volume
by 50%. The case of the ionic compounds is a particularly stringent test of our
method because the pure elements used to predict the pressures for the compounds
are chemically very different from these compounds: on one side, they are metals (Ca,
Mg, Na, K, and Cs), while on the other side, they are covalently bounds molecules
held together by van der Waals forces (O2 and Cl2).

Our method may appear less successful in the case of the covalent crystal SiC.
However, our method predicts the lattice constant of SiC within 0.46%, which is more
accurate than both the LDA lattice constant (-0.85% error) and the lattice constant
obtained by taking either the mean of the lattice parameter of C and Si (3.2% error)
or the mean of their molar volume (7.4% error).

Unfortunately, our linear interpolation scheme does fail in some systems. During
our benchmarking, we found three systems where this approach was unsuccessful: In
the Ga-As and Li-Co-O systems, the pressure was clearly not linear in concentration,
while in the case pure carbon, the pressure associated with diamond and graphite
were radically different. In all cases, the failure is associated with the presence a
markedly anisotropic bonding in some of the compounds, which makes the use of an
isotropic pressure inappropriate. The value of the stress in graphite, when calculated
with the LDA at the experimental lattice parameters, best illustrates the nature of
the problem. While the stress perpendicular to the graphitic layers (0.09 GPa) differs
from the isotropic component of the stress in the diamond structure (14.4 GPa), the
stress along the graphitic layers (16.0 GPa) agrees very well with the value obtained
in diamond.

We have up to now only focused on predicting the lattice parameters, but in
principle, our correction to the LDA Hamiltonian can just as well be used to improve
the accuracy of calculated formation energies. As an additional test, we now show that
in two cases where LDA is known to predict the wrong ground state, our correction
to the LDA Hamiltonian is sufficient to obtain the correct ground state.

If our correction to the LDA is indeed a function of volume and concentration

5The parent lattice is defined as the set of all atomic positions in the crystal, disregarding the
type of atom occupying each site. As is commonly done, we also disregard small relaxation away
from the ideal lattice positions when labeling parent lattices. For example, the L10 structure is
considered to have an fcc parent lattice despite its tetragonal distortion.
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Figure 4-5: Equation of State of Iron Calculated with the LDA only and with the
LDA Using an Exchange-Correlation Pressure (LDA-P).

only, the correction to the energy of two structures which share the same composition
should be of the same form. It follows that the volume-independent terms in Equation
(4.3) do not affect the relative stability of the two structures. The volume dependent
part, PxcΩ, which does affect the relative stability, can be determined as before, from
the pressure calculated with the LDA at the known experimental volume of one of
the structures. The same quantity PxcΩ is then added to the equation of state of
both structures.
One of LDA’s most notorious failures is its prediction that the ground state of iron

is a non-magnetic fcc structure instead of the observed bcc ferromagnetic structure.
As shown in Figure 4-5, the problem is readily corrected by adding a term of the
form PxcΩ determined from the knowledge of the experimental lattice parameter of
bcc iron.
Another example is the LiMnO2 compound used in lithium ion batteries[83] whose

ground state is known to be an orthorombic antiferromagnetic structure. LDA incor-
rectly predicts a so-called layered structure to be the ground state. Once again, our
simple correction, based on the knowledge of the true cell volume of the orthorombic
structure, restores the correct ground state (see Figure 4-6).

4.5 Discussion

Our observations give us more than a practical way to correct LDA’s overbinding.
They also provide useful information regarding the structure of the non-local contri-
bution to the exchange-correlation energy. Our results indicate that a large part of
the error on the total energy obtained through LDA takes the form of a linear function
of the volume, where the constant of proportionality is itself linear in concentration.
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Figure 4-6: Equation of State of LiMnO2 Calculated with the LDA Only and with
the LDA Using an Exchange-Correlation Pressure (LDA-P).

Only very specific corrections to the LDA exchange-correlation energy can give rise
to such a contribution. This section is thus devoted to determining the most general
form of exchange-correlation functional that is compatible with our observations. We
will motivate such a functional form based on the results of previous calculations as
well as on reasonable physical assumptions.

Admittedly, our description of the non-local contribution to the exchange correla-
tion energy is highly simplified: It is not intented to model strong electron correlation
effects. We rather seek to remove LDA’s overbinding problem, which is present in all
materials, even when electron correlations effects are relatively weak. Nevertheless,
we believe that this analysis provides important insight into the continuing search for
more accurate exchange-correlation functionals.

This discussion is organized as follows. We first determine which form the cor-
rection to the LDA exchange-correlation functional must take in order to give rise
to an energy contribution that is a linear function of volume only. We will then ex-
amine the implications of constraining the exchange-correlation pressure to be linear
in concentration. In particular, we will argue that this behavior is possible only if
the correction to the LDA mainly arises from the large non-uniformity in the charge
density near the atom nuclei. This picture naturally provides a physical interpreta-
tion to the exchange-correlation pressure in terms of the zero-order coefficient of the
functional expansion of the exchange-correlation energy, when the point of expansion
is taken to be the atomic charge density.
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4.5.1 Linearity of ∆Exc in Volume

We can divide the volume of the solid in two parts: “core” regions where the charge
density is essentially identical to the charge density of a free atom, and “intersti-
tial” regions where this approximation ceases to apply. The core regions are simply
considered to be spheres centered on each nuclei. The interstitial regions include all
points outside of these spheres. While the charge density in the core regions is clearly
non-uniform, it is essentially frozen. Hence, even if the LDA is a poor approxima-
tion in the core regions, the error it introduces is essentially constant and has little
influence on cohesive properties and in particular, on the equilibrium volume. We
therefore seek the source of LDA’s volume underestimation in the inaccurate descrip-
tion of the exchange-correlation energy in the interstitial region. Our approach is
to correct the exchange-correlation energy in the interstitial regions only, leaving the
correction to be made in the core regions unspecified. We simply need to assume that
the exchange-correlation potential correction in the core regions is independent of the
environment of the core and is a relatively smooth continuation of the correction in
the interstitial regions, in order not to dramatically affect the wavefunctions in the
interstitial region.

In the remainder of this section, we will describe how our results lead to the
conclusion that most of LDA’s bias can be corrected by adding to the LDA exchange-
correlation energy per unit volume eLDAxc (r) in the interstitial region, a term of the
form

∆exc(r) = ∆exc +∆µxcρ(r), (4.4)

where ρ(r) is the charge density at point r and ∆exc and ∆µxc are corrections to the
exchange-correlation energy and potential. We take ∆exc and ∆µxc to be uniform
over the interstitial region for the following reasons.

The observation that our non-self-consistent correction successfully predicts co-
hesive properties indicates that the correction to the exchange-correlation potential
is relatively uniform over the interstitial region, or at least that the deviations away
from a uniform correction are sufficiently small to allow a first-order perturbative
treatment (i.e. a non-self-consistent correction). Any large non-uniformities in the
correction to the exchange-correlation potential would inevitably lead to large cor-
rections to the LDA wavefunctions, leaving the success of our non-self-consistent
approach unexplained.

Prior investigations also support the validity of this non-self-consistent approach.
The error in the LDA exchange-correlation potential was shown to be surprisingly
uniform in systems where the exact exchange-correlation potential can be obtained
at a moderate computational cost: in light atoms [7] and in light atoms dimers
[60]. In these systems, one can see that a simple shift is sufficient to dramatically
improve the accuracy of the calculated exchange-correlation potential in the region
that would correspond to the interstitial region in extended systems. A non-self-
consistent approach can also be justified from the fact that GGA, when implemented
in a non self-consistent way by simply using the GGA exchange-correlation functional
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with the LDA charge density as an input, yields results that are very similar to a
fully self-consistent procedure.[48, 73] The magnitude of GGA’s corrections over LDA
results are comparable to the magnitude of the corrections devised in the context of
the present work and we thus expect the perturbative approach to be appropriate.
A uniform shift in the exchange-correlation potential is modeled by taking ∆µxc

to be uniform over the interstitial region and independent of the interstitial charge
density, which prohibits the inclusion in Equation (4.4) of higher-order terms in ρ.
Note that the value of ∆µxc has little effect on the cohesive properties: to the extent
that the charge density in the core region is truly frozen, the total charge in the
interstitial region is also constant and the integral of ∆µxcρ(r) over the interstitial
regions is volume-independent.
On the contrary, the shift in the exchange-correlation energy per unit volume ∆exc

directly gives rise to the exchange correlation pressure Pxc and, in fact, is numerically
equal to it. The fact that the exchange-correlation pressure for structures which have
the same composition but do not share a common parent lattice is nearly identical
constrains the correction to the exchange-correlation energy to be uniform in the in-
terstitial region. Since the shape of the interstitial space strongly depends on the type
of lattice, any non-uniformity would make the Pxc lattice-dependent. A convenient
consequence of the uniformity of ∆exc is that the exchange-correlation pressure is
independent of the precise radius chosen to delimit the core regions.

4.5.2 Importance of the Core Charge Density

Using the observation that most of LDA’s error on the total energy takes the form
of a correction that is linear in volume enabled us to considerably restrict the type
of correction to the LDA exchange-correction functional we are focusing on. Using
the fact that the exchange-correlation pressure is linear in atomic concentration lets
us be more specific about what determines the unknown constants ∆exc and ∆µxc.
We have already indicated that these constants should be essentially independent of
the interstitial charge density. Analyzing the linearity of Pxc with concentration will
make it clear that these constants are essentially determined by the charge density in
the core regions.
Limiting ourselves to the conservative assumption that ∆exc(r) at a point r in the

interstitial region only depends on the charge density in the interstitial region (as done
in the GGA, for example), makes it difficult to explain our simple linear relationship
between Pxc and concentration. First, the charge density in the interstitial region
is highly dependent on the exact location of neighboring atoms — information the
concentration by itself seems unable to convey. Second, even if we assume that atoms
sit exactly on the sites of a parent lattice common to all phases in the system of
interest and approximate the charge density in the interstitial regions by overlapping
atomic charge densities, we still face a problem. The exchange-correlation functional
is a non-linear function of the charge density and summing atomic charge densities
does not translate into summing the exchange-correlation contributions coming from
each neighboring atom. The only possibility is that ∆exc can be approximated by a
linear functional. But then, we obtain a ∆Exc that is volume-independent since, as
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we have indicated before, the total interstitial charge density is essentially volume-
independent.

However, if we consider the possibility that exc(r) at a point in the interstitial
region depends on the charge density in a neighborhood large enough to include the
core regions of the neighboring atoms, we will see that a simple explanation for our
findings emerges. While the dependence of ∆exc on the interstitial charge density
needs to be assumed linear, no such restriction needs to be imposed in the case of
the dependence on the core charge density. Assuming that our volume-dependent
correction to the LDA exchange-correlation energy in the interstitial region does not
arise from the small non-uniformities of the interstitial charge density, but rather from
the large non-uniformities of the core charge densities, avoids most of the difficulties
mentioned previously. First, the charge density in the core regions is independent of
the exact location of neighboring atoms. Second, the problem of the non-linearity
of the exchange-correlation energy is irrelevant since, the core charge density is not
obtained by a sum of the contributions of neighboring atoms but by the contribution
of one atom only. The only assumption needed is that the correction arising from
each neighboring atom are additive, which we will motivate shortly.

Previous calculations in systems simple enough to allow an accurate evaluation
of the exchange-correlation energy provide substantial evidence that the core charge
density has an important effect on the exchange-correlation energy in the interstitial
region.

The spatial extent of the exchange-correlation hole is a measure of the size of
the neighborhood which is expected to influence the exchange-correlation energy at
a point. Accurate calculations of the exchange-correlation hole in real systems show
that it extends up to distances that are comparable to the interatomic distances.
This has been directly observed in calculations in silicon [65], while calculations of
the electron pair-correlation function in diamond [44] and metallic lithium [127] indi-
cate that a similar feature is present in those systems.6 Additionally, the radius of the

exchange-correlation hole obtained through LDA,
〈
1
rxc

〉
= εLDAxc , provides an estimate

of the spatial extent of the true exchange-correlation hole. For all the metals investi-
gated in this work, this approximate exchange-correlation hole radius is comparable
to the distance separating neighboring atoms.

Another indication of the influence of the core charge density on the interstitial
exchange-correlation energy is that the exchange-correlation hole exhibits a surprising
feature when a reference electron is located in the neighborhood of an isolated atom
or a molecule. The exchange-correlation hole possesses not only a peak centered
on the reference electron but also exhibits additional peaks where the exchange-
correlation hole overlaps the core of the neighboring atoms, as illustrated in Figure
4-7. Whenever the reference electron is located in regions of relatively low electronic
density, the exchange-correlation hole tends to “leak” to the nearest region where the
charge density is large. This effect is especially large for isolated atoms [43], molecules
[138] and surfaces [76]. This is responsible for the incorrect asymptotic behavior of

6The electron pair-correlation function is directly related to the exchange-correlation hole [67].
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Figure 4-7: Schematic Shape of the Exchange-Correlation Hole (ρxc) for a Reference
Electron Located at Point r in the Interstitial Region. The exchange-correlation hole
exhibits extra peeks where the hole overlaps the core charge density (peaks in the
graph of ρ) of neighboring atoms.

the LDA exchange-correlation as the reference electron is moved to infinity [138].
LDA predicts an exchange-correlation hole which follows the reference electron as it
is moved away, whereas the true exchange-correlation hole actually largely remains in
the atom, the molecule, or near the surface. This is clearly an indication that regions
of large charge density can in principle have an impact on the exchange-correlation
energy up to arbitrarily large distance. Accurate Quantum Monte Carlo calculations
have shown a similar effect in extended solids. Calculations in silicon [65] show the
presence of these multiple peaks while calculations on metallic lithium [127] and in
diamond [44] show multiple peaks in the electron pair correlation function from which
multiple peaks in the exchange-correlation hole can be inferred.

4.5.3 Linearity of Pxc in Concentration

While we have motivated that ∆exc in the interstitial region is mainly determined by
the charge density in the cores we still have to describe how a linear dependence on
concentration arises.
Let us first define a few quantities. The exchange-correlation energy per unit

volume exc(r) at a point r can be expressed in terms of the electron pair-correlation
function:

exc(r) =
1

2

∫
g(r, r′)d3r′, (4.5)

where g(r, r′) is a functional of the charge density that embodies all the information
regarding the electron pair-correlation function. More specifically,

g(r, r′) =
1

|r− r′|
ρ(r)

(
h(r, r′)− 1

)
ρ(r′)

where h(r, r′) is the coupling-constant-averaged electron pair-correlation of the sys-
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Figure 4-8: Idealized Shape of the Region Whose Charge Density is Expected to
Influence the Electron Pair Correlation Function Between Points r and r′.

tem, as defined, for example, in Reference [72]. (The explicit functional dependence of
exc(r) and g(r, r

′) on the charge density ρ has been omitted to simplify the notation).
The difference between the true and the LDA exchange-correlation follows a sim-

ilar structure:

∆exc(r) =
1

2

∫
∆g(r, r′)d3r′, (4.6)

where ∆g(r, r′) is defined as the difference between the true value of g(r, r′) and its
approximation obtained with the LDA.
With these definitions in hand, we now introduce a plausible restriction to the

functional dependence of ∆g(r, r′) on the charge density which guarantees that the
shift in the exchange-correlation energy density in the interstitial region is linear in
concentration. We consider ∆g(r, r′) to be a functional of the charge density in a
relatively narrow region surrounding the segment joining points r and r′. The width
w of this region is assumed to be small relative to interatomic distances, as illustrated
in Figure 4-8.
Under this assumption, the integration of ∆g(r, r′) over r′ in Equation (4.5) is a

linear operation: ∆exc(r) reduces to a sum of integrals over disjoint sectors Si (see
figure 4-9), each of which representing the contribution coming from one particular
neighboring atom i:

∆exc(r) =
∑
i

∫
Si

g(r, r′)d3r′

If w is not too large compared to interatomic distances, there will be only a small
coupling between the charge density of neighboring sectors and a term corresponding
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Figure 4-9: The exchange-correlation energy at a point r in the interstitial region can
be written as a sum of integrals over disjoint sectors Si, each of which representing
the contribution coming from one particular neighboring atom i.

to sector Si will mainly depend on the charge density in sector Si.
These approximations allow the difference between the LDA exchange-correlation

energy per electron and the true one, ∆εxc, in the interstitial region to be approxi-
mated by a sum of contributions coming from nearby atoms. The linearity of ∆εxc(r)
in the atomic concentration is thus a consequence of the well-known fact that only
the spherical average of the exchange-correlation hole plays a role in determining the
exchange-correlation energy.

4.5.4 Atom-Specific Correction

We can now give a simple interpretation to the constants ∆exc and ∆µxc introduced
earlier. Since the correction to the LDA exchange-correlation in the interstitial region
can be approximated by a sum of independent contributions from neighboring atoms,
we can approximate the correction to the exchange-correlation energy at a point in
the interstitial region by replacing the exact contributions coming from each neigh-
boring atom by the contributions of isolated atoms centered at the same locations,
as illustrated in Figure 4-10. Even though this procedure may seem approximate,
including non-local effects, even in this simplified way, is an improvement over not
including them at all.
Consider an isolated neutral atom i centered at the origin with charge density

ρi(r). This atom has a non-zero non-local exchange-correlation energy density ∆e
i
xc(r)

at every point in space, which can be integrated over space to give its total non-local
exchange-correlation energy:

∆Eixc =

∫
∆eixc(r)d

3r.

The quantity ∆Eixc will of course change if the charge density in the neighborhood of
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Figure 4-10: Approximating the Non-Local Exchange-Correlation Energy as a Sum
of Independent Contributions

this atom is perturbed by an amount δρ(r). Provided that δρ(r) is not too large, we
can approximate the true dependence of ∆Eixc on δρ(r) by an expansion of the true
exchange-correlation function in terms of a series of homogeneous functional of δρ(r)
of degree 0, 1, 2 . . .
The zero order term of this expansion is simply the value of ∆Eixc at the “point”

of expansion, that is, evaluated at the atomic charge density ρi(r). Thus the zero-
order correction to LDA consists in adding the energy ∆eixc(r) at every point in the
neighborhood of atom i. In accordance with our earlier assumptions we consider the
dependence on r to be weak outside of the core. The shift in exchange-correlation
energy in the interstitial region introduced earlier is thus simply the sum of the atom-
specific shift of the neighboring atoms:

∆exc =
∑
i

∆eixc

The first order term of this functional expansion can be expressed in terms of the
functional derivative of the non-local exchange-correlation energy evaluated at the
atomic charge density:

δ∆Eixc =

∫
δ∆Eixc
δρ

∣∣∣∣
ρ=ρi

δρ(r)dr

≡

∫
∆µixc(r)δρ(r)dr,

which defines an atom-specific correction to the exchange-correlation potential ∆µixc(r).
As before, assuming a weak dependence on r and summing the contributions of neigh-
boring atoms provides the shift in the exchange-correlation potential:

∆µxc =
∑
i

∆µixc

In the same spirit as in the beginning of this section, higher order terms of the
functional expansion are neglected.
The non-local exchange correlation pressure (Pxc) is thus more than a fitting pa-

rameter in an empirical equation of state. Under plausible assumptions, this pressure
can be interpreted as the sum of the zero-order corrections to the LDA exchange-
correlation energy of each atom present in a given compound.
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4.6 Conclusion

This chapter’s first objective is to emphasize that LDA’s overestimation of phonon
frequencies and elastic moduli is essentially a consequence of its underestimation of
the equilibrium volume. In a large class of materials, calculated elastic properties are
in good agreement with experiment when the LDA calculations are performed at the
experimental volume.
Given the importance of obtaining the correct equilibrium volume, we propose a

simple and yet effective way to correct LDA’s bias: apply a negative pressure such that
the equilibrium volume agrees with experiment. We have argued that this so-called
non-local exchange-correlation pressure originates from the non-local contribution to
the exchange-correlation energy per unit volume in the interstitial region of the solid.
This method would be of limited usefulness if one needed a different non-local

exchange-correlation pressure for each compound. Fortunately, we have observed
that the non-local exchange-correlation pressure of a compound can be accurately
determined by taking the concentration-weighted average of the non-local exchange-
correlation pressure of elements. This linear relationship holds for all the metallic,
ionic and covalent systems we have investigated and we are confident of its wide
applicability.
We then propose a simple explanation for this surprising linear behavior which

relies on the following main assumptions.

• The non-local contribution to the exchange-correlation energy in the interstitial
region mainly originates from the large non-uniformity of the core charge density
and not from the weak non-uniformities of the interstitial charge density.

• This non-local correction can be approximately expressed as a sum of indepen-
dent contributions coming from nearby atoms.

• These contributions take the form of a nearly uniform, atom-specific, and charge-
density-independent correction to the exchange-correlation energy density in the
interstitial region.

These assumptions, which are crucial in obtaining a linear dependence between the
non-local exchange-correlation pressure and concentration, are guided by the results of
previous investigations which have determined the exact exchange-correlation energy
in simple systems.
Our results have implications at two different levels:

• A simple linear interpolation scheme provides a simple and accurate way to
correct LDA’s volume underestimation. Furthermore, this correction is often
sufficient to dramatically improve the accuracy of calculated elastic properties.

• The fact that such a simple scheme performs so well provides strict constraints
on the behavior of the non-local corrections to the LDA and provides helpful
clues in the continuing search for better exchange-correlation functionals. Atom-
specific corrections determined from isolated-atom calculations would appear a
promising approach.
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Chapter 5

The ground state problem

5.1 Introduction

The topology of a phase diagram is mainly determined by the ground states of the
alloy system considered, that is, the structures that have the lowest energy (at a
given chemical composition). In a system where the only ground states are the pure
elements, the phase diagram will consist of a simple miscibility gap.1 In a system
exhibiting various intermetallic phases, each ground state manifests itself as a line
compound (with sometimes a relatively wide concentration range) that eventually
disorders or melts as temperature increases. The ground states are the structures
that are the most stable at the absolute zero of temperature and this stability usually
persists at higher temperatures as well.
In this chapter we will first introduce the basic framework that allows the deter-

mination of the ground states of an alloy. We focus on the case where all ground
states are assumed to be superstructures of a known parent lattice (e.g. fcc or bcc).
(If needed, more than one parent lattice could be considered in turn, and the result-
ing ground states can be combined.) We will then describe the key concepts that are
required to improve existing ground state search techniques, before introducing a new
approach to solve the ground state problem. We finally go through a step-by-step
example of the use of this method in a simple case in order to illustrate its usefulness.

5.2 Formalism

5.2.1 Formulation of the ground state problem as a mini-
mization problem

The so-called ground state problem is the apparently impossible task of looping
through the infinite set of every possible structure (which can have arbitrarily large

1The critical temperature may be sufficiently low so that perfect solid solubility is observed down
to very low temperatures. Nevertheless, the third law of thermodynamics requires a system that is
in equilibrium to eventually phase separate as its temperature approaches absolute zero.
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unit cells) in search for the structure that minimizes the energy at a given composi-
tion. Fortunately, the basic formalism of the cluster expansion permits a very elegant
way to determine the ground states of an alloy system. In the cluster expansion for-
malism, the energy of the alloy is expressible as a linear function of the correlations
ρα (see Section 2.2.1):

E

N
=
∑
α

mαJαρα.

Thus, in order to find the minimum energy structures, one can replace the search
through the set of structures by a search through the set of correlations. The advan-
tage is that the energetics of the alloy system can typically be described by a cluster
expansion containing a finite number of terms T . The set of correlations that need
to be considered is then simply [−1, 1]T , a set of perfectly manageable size. All other
correlations are irrelevant, since they do not affect the energy. This transformation
also allows us to represent the ground state problem as an optimization problem with
continuous variables instead of discrete ones.
Formulated in this fashion the problem appears almost trivial: we have to mini-

mize a linear function of a finite number of continuous variables. The complication
comes from the fact that while any physical structure is associated with a vector of
correlations ~ρ = (ρα1 . . . ραT ), not all correlations vectors correspond to a physical
structure. To illustrate the problem, consider a triangular lattice with a cluster ex-
pansion that includes only a point and a nearest neighbor pair correlation. On the
triangular lattice, it is impossible to construct a structure having a nearest neigh-
bor correlation of −1. A correlation of −1 implies that every nearest neighbor pair
has to connect dissimilar atoms, which is impossible on a triangular lattice. This
phenomenon is referred to as “frustration”.
The fundamental problem is to describe the subset S of [−1, 1]T that correspond to

physical structures and minimize the energy over that subset. The subset S is called
the configurational polytope and any correlation vector in S is said to be constructible
because a structure having those correlations can be constructed. An important ob-
servation made by Allen and Cahn [6] is that the configurational polytope is defined
by a set of linear inequalities. Before describing how these inequalities are deter-
mined, let us note that an apparently intractable problem has been converted into
the surprisingly simple task of minimizing a linear function over a set defined by linear
inequalities. This very standard problem can be solved through linear programming
techniques [31]. The essential idea is that a linear function defined on a convex2 poly-
tope necessarily reaches its minimum at one of the vertices3 of the polytope. Thus,
the ground state problem reduces to finding the vertex of the configurational polytope

2The convexity of S can be shown be considering any two points ~σ1 and ~σ2 in S and noting
that a structure having correlation vector lying on the line joining ~σ1 and ~σ2 can be constructed by
forming a phase-separated mixture of the structures associated with ~σ1 and ~σ2. The convexity of S
drastically simplifies the search for the minimum.
3Even if the minimum were reached at more than one point at the same time, at least one of

these points would be a vertex.
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that minimizes energy.

To obtain the set of structures the minimize energy as a function of composition,
all is needed is to add a chemical potential term to the cluster expansion: µρπ where
π is the point cluster.4 By scanning every possible value of the chemical potential µ,
every ground state is found in turn.

5.2.2 Determination of the configurational polytope

We now return to the problem of determining the configurational polytope. The
essential idea is that, while it is difficult to prove that a given correlation vector ~ρ
corresponds to an actual structure on an infinite lattice, it is very simple to prove
that ~ρ corresponds to an actual structure defined on a finite cluster of lattice sites
αmax. In other words, we no longer try to construct periodic structures on an infinite
lattice, but only to construct configurations on a finite cluster αmax. We consider
as constructible (on a cluster) any correlation vectors ~ρ that can be obtained by a
weighted average of the correlations of a set of configurations defined on αmax. Note
that αmax must be chosen so that it includes all the clusters α1 . . . αT considered in
the cluster expansion.

To simplify the notation, we introduce the following convention. The statement∑
α⊂̂αmax

denotes any subcluster α of αmax, excluding clusters that are equivalent by
a symmetry operation of the parent lattice to clusters already considered. It is a
shorthand notation for the set of all symetrically distinct subsets of αmin. As shown
in [41], the configurational polytope derived from a finite cluster αmax is given by the
set of vectors (ρα)α⊂̂αmax such that, for any spin configuration σ on αmax,∑

α⊂̂αmax

Vσαρα ≥ 0 (5.1)

where

Vσα =
∑

γ∈Ω(α,αmax)

∏
i∈γ

σi

where Ω (α, αmax) is the set of all clusters symmetrically equivalent to α that lie in
αmax and σi is the spin on site i when cluster α has configuration σ.

We briefly outline the proof of this expression. Let us momentarily ignore sym-
metry of the lattice. By definition, the correlation associated with cluster γ for
configuration σ on αmax is simply given by

∏
i∈γ σi, which denote by vγσ. Let us

assign a probability Pσ ≥ 0 to each configuration σ. The average correlation of this
mixture of configurations is then given by

ργ =
∑
σ

vγσPσ. (5.2)

4If there are more than one symmetrically distinct point clusters: µ
∑
imπiρπi .

111



The correlation vector (ργ)γ∈αmax is constructible on αmax because it is the average
correlation of a set of actual configurations on αmax. It can be shown that the matrix
vγσ is orthogonal

5 and it follows that Equation (5.2) can be directly inverted:

Pγ = 2
−|αmax|

∑
γ

vγσρσ

where |αmax| denotes the number of sites included in αmax. Collecting terms that are
equivalent by symmetry then yields Equation (5.1).

Constructibility on an infinite lattice implies constructibility on a cluster. To
see this, consider every possible cluster on the infinite lattice that is symmetrically
equivalent to αmax. For a given structure defined on the infinite lattice, the structure
is clearly constructible on each image of the cluster αmax. Also, the overall average of
the correlation on each image of the cluster αmax is the same as the average correlation
of the whole infinite lattice.

Since constructibility on an infinite lattice implies constructibility on a cluster, the
configurational polytope obtained from a finite cluster Sα,max necessarily contains the
true configurational polytope S. This observation is extremely important because
it allows us to prove that a given structure is a ground state without considering
every possible structure. We first find the minimum ~ρ∗ of the energy over Sα,max,
an operation that can be performed in a finite amount of time (since αmax is finite).
Now, suppose that we are able to find a structure on the infinite lattice that has
the correlation vector ~ρ∗. The precise procedure to accomplish this is described in
Appendix B but for now let us simply say that this operation takes only a modest
amount of time if the structure we are interested in happens to have a small unit cell.

It can then be shown that these two observations imply that ~ρ∗ is the correlation
vector of a ground state on the lattice. On the one hand,

E (~ρ∗) = min
~ρ∈Sα,max

E (~ρ)

≤ min
~ρ∈S

E (~ρ) since S ⊂ Sα,max.

On the other hand, since ~ρ∗ is constructible, ~ρ∗ ∈ S and

E (~ρ∗) ≥ min
~ρ∈S

E (~ρ) .

It follows that E (~ρ∗) = min~ρ∈S E (~ρ), i.e., that ~ρ
∗ is associated with a ground state.

Of course, this nice result relies on the assumption that ~ρ∗ is constructible. What
can we do if ~ρ∗ is not constructible? We can try to find the configurational polytope
with a larger cluster α′max that includes the previous cluster αmax. This inclusion
guarantees that the new polytope is smaller. As the size of αmax goes to infinity,
Sα,max converge to Sα and the resulting ~ρ

∗ would be necessarily constructible. The
advantage of the method lies in the observation that the true ground states of an

5up to a multiplicative constant
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alloy system can usually be obtained with a finite cluster αmax.
The truly remarkable property of this formalism is that a problem that appears to

require an infinite amount of time (scanning through every structure) is reduced to a
procedure that requires a finite amount of time, and yet provides a decisive answer.

5.3 Redefinition of the Problem

The traditional method of solving this problem has essentially one limitation. Al-
though we know exactly how large the maximal cluster needs to be to capture the
effect of all interactions, it is impossible to predict the cluster size needed to capture
frustration effects. Worse still, frustration effects might have a much longer range
than the interaction. This requires the use of a rather large maximal cluster. Since
the complexity of the problem increases exponentially with cluster size, the problem
rapidly becomes intractable.
To tackle this problem, we choose the maximal cluster size only on the basis of

interaction range and deal with frustration effects when they manifest themselves
during the construction process.

5.3.1 Definitions

We shall call the cluster which is just large enough to capture all interactions the low
cluster. All entities pertaining to this cluster will be prefixed by the word “low”:

Low configuration A particular disposition of atom (◦ or •) on all sites of the low
cluster. A configuration is represented by the cluster containing all sites hosting
an atom of type •.

Low correlation Any correlation 〈σα〉 where α is a subcluster of the low cluster.

Low inequality Inequality expressible as a linear combination of low correlations.

Elementary low inequality Inequality stating that one particular low configura-
tion has a positive probability of occurrence.

Low configurational polyhedron Polyhedron defined by the set of all elementary
low inequalities.

Low valid inequality low inequality defining a volume which encloses the low con-
figurational polyhedron. That is, a low valid inequality is satisfied for all point
in the low configurational polyhedron.

The low configurational polyhedron, which is defined in a rather low dimensional
space, is assumed to be completely known.
In order to detect frustration effects, we would need a larger cluster. As we have

done for the low cluster, we shall prefix all entities associated with this larger cluster
with the word “high”. The high configurational polyhedron produced by this high
cluster lives in a rather high dimensional space and it is impossible to know all its
faces. It is nevertheless conceptually useful to know the existence of this polyhedron.
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low valid low inequality

low dimensional subspace

high configurational polyhedron

high valid low inequality

low configurational polyhedron

high valid high inequality

Figure 5-1: Relationship Between High-Dimensional and Low-Dimensional Quanti-
ties.

5.3.2 Properties

It is interesting to point out the relations between the “low” the “high” entities
previously defined. Suppose that we embed the low dimensional space in the high
dimensional one (see Figure 5-1). That is, we view the low dimensional space as an
hyperplane in the high dimensional one. In this context a low inequality is just a
particular type of high inequality whose normal6 is in the low dimensional subspace
(i.e., the inequality is “perpendicular” to our low dimensional subspace). Similarly,
any low correlation is also a high correlation.

It is also important to note that the probability of occurrence of a low configuration
is equal to the sum of probability of occurrence of all high configuration containing
the given low configuration on a subcluster. For example, if the low cluster is a pair
and the high cluster a triplet, we may write:

ρ
(
◦
• ) = ρ (◦•◦)+ ρ (◦••)

where ρ(γ) denotes the probability of occurrence of configuration γ. When the cluster
α on which the configuration is defined is ambiguous we will use the notation ρα(γ)
instead.

We shall call this property, the expansion summation and in general it is expressed
as following. With this convention a low configuration γ on the low cluster α (i.e.,

6normal to the plane defined by changing the inequality to an equality
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γ ⊂ α) can be written as a sum of configuration on the high cluster β:

ρα(γ) =
∑

δ∈ expand(γ,α;β)

ρβ(δ) (5.3)

where expand (γ, α; β) is the expansion of configuration γ on cluster α onto cluster β,
defined as

expand (γ, α; β) = {δ ⊂ β such that (δ ∩ α) = γ}. (5.4)

A consequence of the expansion summation property is that the high dimensional
polyhedron is always contained within the low dimensional polyhedron. (Note that,
in the high dimensional space, the low dimensional “polyhedron” is in fact a prism
of infinite length whose axis is perpendicular to the low dimensional subspace.) It
follows that a low valid inequality is always high valid. But the converse is not true:
first, an arbitrary high inequality is generally not a low inequality. But even if we
choose a high valid inequality which is a low inequality it might well intersect the low
dimensional polyhedron.

5.3.3 Back to Our Problem

In fact, the high valid low inequalities which intersect the low configuration poly-
tope are exactly the ones which we are interested in. Indeed, we seek low inequalities
because we do not want to work in the high dimensional space. We also want inequal-
ities which intersect the low configurational polyhedron because these are the ones
which give us new information about how to alter the shape of the low dimensional
polyhedron to take new frustration effects into account. Finally, we want high valid
inequalities because otherwise they would intersect the high dimensional polyhedron
and would even exclude constructible structures.
We can now restate our problem more precisely. Suppose that, in our attempt to

find a ground state using the low configurational polyhedron, we obtain a vertex v
(in the low dimensional space) which seems to be non constructible. We would thus
like to find all low inequalities which are high valid and which exclude vertex v. We
then add these extra constraints to our linear programming problem and find a new
candidate for a ground state. We may have to repeat the process again if this new
vertex happens to be also non constructible.
Is it also possible that the initial vertex v was actually constructible but had a

very large unit cell. In that case, our method should indicate this failing to generate
any new inequality.

5.3.4 General Principles

Let us split the problem in two parts.
We first need a convenient way to express any low inequality. In the next section

we will see how to express any low (or high) inequality as a linear combination of
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elementary low (or high) inequality. This will enable us to easily select only the
inequalities which exclude the vertex of interest and give us way to measure the
tightness of an inequality.

We then need to verify if a given low inequality is high valid. To do so, we will
view any low inequality as special type of high inequality. This high inequality can
then be expressed as a linear combination of elementary high inequality. We will see
in subsequent sections, that when inequalities are expressed in this form, their high
validity can be checked my merely verifying if all weight of the linear combination
are positive. What makes this method tractable is that it is possible to express low
inequality as combination of elementary high inequality without having a complete
knowledge of the high dimensional polyhedron.

The last section of this report explains how to implement the suggested method.

5.4 Generating Candidate Inequalities

Before delving into the problem of generating candidate inequalities let us first review
a few properties of linear combinations of linear inequalities.

5.4.1 Linear Combinations of Inequalities

Without loss of generality, all linear equalities can be written in the form

1 +

n∑
i=1

aixi = 0, (5.5)

where the xi are the correlations. There is a one-to-one correspondence between any
equality of the form of Equation (5.5) in primal space and a point [a1 . . . an] in dual
space.

Consider a linear combination of a collection of equalities:

∑
j

λj

(
1 +

n∑
i=1

ajixi

)
= 0.

For the result to be of the form of Equation (5.5), we must require that∑
j

λj = 1.

Such a combination is called an affine combination. In dual space, the locus of all
possible affine combination of a set of p (distinct) points is the p − 1-dimensional
hyperplane containing those points.
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Now consider inequalities of the form

1 +

n∑
i=1

aixi ≥ 0. (5.6)

Note that we restrict ourselves to inequalities which define a region containing the
origin. (This is not a problem since, in our case, the origin corresponds to a disordered
state with having equal amount of each atom, which is always a possible structure.)
This restriction permits a one-to-one correspondence between any inequality of the
form Equation (5.6) and a vector [a1 . . . an] in dual space.
Performing a linear combination of inequalities requires that λj ≥ 0. This restric-

tion arises from that fact that an inequality changes direction when it is multiplied
by a negative number. Adding inequalities of different directions is meaningless. An
affine combination having only positive weight is called a convex combination. In
dual space, the locus of all convex combinations of a set of p (distinct) points is the
convex hull of those points.
Although affine combinations of inequalities do not make sense when some weight

are negative, it is still convenient to define an “affine combination” in the following
way. An affine combination of a set of inequalities {Qj ≥ 0} is defined as∑

j

λjQj ≥ 0 with
∑
j

λj = 1.

That is, we perform the affine combination of the left hand sides only and state that
the resulting expression is greater that zero.
Using this definition, we can easily express an important result. Since the result

holds for both the low an the high dimensional spaces, we omit the distinctive prefix.

Proposition 1 Any inequality (valid or not) can be expressed as an “affine combi-
nation” of elementary inequalities.
Sketch of proof: In dual space, the set of all elementary inequalities is mapped to
a set of points. For these points to be able to generate the whole dual space by affine
combinations they must not lie on a hyperplane of dimension less than the dimension
of the whole dual space.
If these points were lying on such an hyperplane the configurational polyhedron

in dual space would have zero volume. Thus, in primal space the configurational
polyhedron would have infinite volume. Yet the configurational polyhedron is always
bounded.

5.4.2 Excluding a Given Vertex

In the previous section, we described a way to generate all possible low inequalities
from elementary low inequalities. Let us now turn to a more specific problem: find
an expression for all low inequalities which exclude a given vertex.
A vertex v is uniquely defined by the set of faces going through it. These faces

are elementary inequalities which are satisfied as equalities at vertex v. Let us de-
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Figure 5-2: Illustration Accompanying Proposition 2.

notes these equalities by Qi = 0, i = 1 . . . n ( n is always greater or equal than the
dimensionality of the space).

It is always possible to find at least another face on configurational polyhedron
which does not go through v. Otherwise, the polyhedron would not be bounded. The
inequalities defining such faces are satisfied as a strict inequality at v. We denote
them by Pi > 0, i = 1 . . .m.

We can show the following.

Proposition 2 One can express all inequalities which exclude vertex v by combina-
tions of the form:

(1− λ)Q+ λP ≥ 0, (5.7)

where Q is any affine combination of the Qi, P is a convex combination of the Pi and
λ < 0.

Sketch of proof: (See Figure 5-2.) If a linear inequality defining a region R
excludes a vertex v (in primal space) it means that v 6∈ R. In dual space, this fact
translates as r 6∈ V , where r is the point representing region R and V is the region
represented by point v.

All the Qi are equal to zero at vertex v, which means that they are represented, in
dual space, by points qi located on the boundary of V . The set of all affine combination
of the qi defines the boundary of V in dual space. (Using the fact that the polyhedron
is bounded, one could show that the whole boundary of V is generated and not only a
subset of it).

Since Pi > 0 at vertex v, any convex combination P of the Pi is also strictly greater
than zero at vertex v. Now consider the point p in dual space, which represents
inequality P in primal space. Point p belongs to V since P > 0 at v. Any affine
combination of a point q on the boundary of V and p will yield a point r 6∈ V if p is
given a negative weight (λ < 0).

We can also perform the following simplification.
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p = q1’

(1-λ)q+λp = (1-λ’)q1’+λ’p1

VV’1

q

Figure 5-3: Illustration Accompanying Proposition 3.

Proposition 3 In Proposition 2 we can restrict Q to be a convex combination instead
of an affine combination.
Sketch of proof: We first note that whenever Q is not a convex combination,
(1 − λ)Q + λP ≥ 0 is violated at one or more other vertices v′i (see Figure 5-3).
Defining quantities Q′i and P

′
i for vertices v

′
i analogously to Q and P for vertex v, we

can prove that for at least one of those vertices, Q′i is a convex combination. Hence
we could have generated this candidate inequality by attempting to exclude a vertex
v′i using a convex combination for Q

′
i instead of excluding vertex v using a affine

combination for Q.

Hence, we now have a way to generate all candidate inequalities. By using com-
bination of elementary low inequalities, we automatically generate low inequalities.
By selecting the appropriate signs in the combination, we can select the inequalities
which exclude the appropriate vertex. We give positive (≥ 0) weights to inequalities
which are satisfied as equalities at vertex v and negative weights (≤ 0) to the others.

5.4.3 Inequality Tightness

It would be useful to be able to determine the tightness of the inequalities we generate
(i.e., how much they cut out of the configurational polyhedron). That way, we could
first consider the tightest low inequality and if they turn out to be high valid, we
immediately add them to the linear programming problem. If this new inequality
is sufficient to generate a vertex which is optimum and constructible, we can stop
the process without having to generate any new inequality. On the other hand, if
we generate inequalities in random order of tightness, it is unlikely that the first few
generated inequalities will be sufficient to produce an optimum constructible vertex.
An inequality A ≥ 0 is tighter than an inequality B ≥ 0 if A ≥ 0⇒ B ≥ 0. There
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Figure 5-4: The Concept of Tightness of an Inequality (see text).

is no way to define an absolute measure of tightness: A and B can be such that no
logical relation exist between them (for example, take x + y ≥ 0 and x − y ≥ 0).
We will however define a measure of tightness which is simple to compute and agrees
with the strict definition of tightness when comparison is possible.

Consider a vertex v which we try to exclude, lying at the intersection of planes
Qi = 0 and an inequality R ≥ 0 whose tightness we want to evaluate (see Figure 5-4).
In dual space these objects map, respectively, to a hyperplane V = 0 going through
a set of points qi and a point r whose “tightness” we want to evaluate.

Let us define the tightness as

t =
r · v

‖v‖
. (5.8)

Hence, the farther r is from plane V = 0, the tighter is R ≥ 0. In primal space, this
quantity also has a simple interpretation: define s as being the distance between the
origin and the point of intersection of hyperplane R along the line joining the origin
and vertex v:

s =
‖v‖

r · v
.

We see that t = 1/s. In Figure 5-4, we also see that when two inequalities are parallel
(i.e., when their tightness can be compared), distance s lets us determine the tightest
inequality. Hence t agrees with the strict definition of tightness when it applies.

We can relate the maximization of t to the value of λ in Proposition 2 by noting
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that, in dual space,

t =
r · v

‖v‖

=
((1− λ)q + λp) · v

‖v‖

=
(1− λ) + λp · v

‖v‖
(since p goes through plane V , p · v = 1)

=
1 + λ(p · v − 1)

‖v‖
.

But p · v < 1 because inequality P > 0 is satisfied at vertex v. Thus, the more
negative λ is, the tighter the inequality.

5.4.4 From Rational to Integral Weights

Proposition 2 gives us an expression of all candidate inequalities in term of a affine
combination of elementary inequalities. Since all inequalities of interest have rational
coefficients, it follows that the weights used in the affine combination are also rational.
We can always multiply the whole expression by some integer so that rational weights
become integral weights.
Strictly speaking, we no longer have an affine combination but it is possible to

transform any linear combination into a affine combination by simply multiplying
the resulting equation by some constant so that the constant term remains 1. And
multiplying an inequality by some constant does not change the region of space it
represents. We will therefore not bother about the distinction between linear and
affine combination unless we want to represent equalities in dual space.
This observation lets us write any candidate inequality in a more practical form:∑

γ

mγρα(γ) ≥ 0 (5.9)

with mγ ∈ Z or, more precisely,∑
γ∈Z

mγρα(γ)−
∑
γ∈Z

|mγ | ρα(γ) ≥ 0 (5.10)

where Z is the set of all low configurations of zero probability of occurrence at vertex
v while Z is the set of low configurations of non zero probability of occurrence at
vertex v.
Under this point of view, maximizing our criterion of tightness implies that we

must make the mγ with γ ∈ Z as small as possible and make the |mγ | with γ ∈ Z as
large a possible, since:

λ =
−
∑
γ∈Z |mγ |∑

γ∈Z mγ −
∑
γ∈Z |mγ|
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where λ is defined as in Proposition 2.
This result suggests to test inequalities in a particular order. Since λ must be

strictly smaller than zero, we need at least one negative term −ρα(γ) with γ ∈ Z.
We then gradually add positive terms of the form ρα(γ) with γ ∈ Z until a high valid
inequality has been found.7 At this point, we have at least succeeded in proving that
the vertex v we have failed to construct is really non constructible.
After adding our new inequality to our linear programming problem, we check if

we obtain an optimum constructible vertex. If not, we try to improve our inequality
by adding another negative term and gradually adding positive terms again, until a
high valid inequality has been found. We then repeat the process described in this
paragraph over again until an optimum constructible vertex is found.
This algorithm generates high valid inequality in order of decreasing tightness in

the following sense. Start two copies of a program which attempt to find a high valid
inequality. The only difference between the two programs is that, at each step, they
do not choose exactly the same terms ρα(γ) to add or subtract from the inequality.
The first program to find a valid inequality will have found a tighter inequality than
the first one generated by the other program a moment later. A similar property
holds for subsequent inequalities. However there is no relation between the tightness
of the n-th inequality generated by one program and the m-th inequality generated
by the other program if n 6= m.

5.5 Testing Inequality Validity

We now describe a way to detect which candidate inequalities are high valid.

5.5.1 Convex Combination and Validity

The concept of convex combination is directly related to the concept of validity of
an inequality. We will omit the prefix “low” or “high” since the following result is
general.

Proposition 4 An inequality is valid if and only if it is expressible as a convex
combinations of elementary inequality.
Proof: To show that a convex combinations of elementary inequalities is valid we
note that elementary inequalities are satisfied for any point of the configurational poly-
hedron. A sum of satisfied inequality always gives a satisfied inequality. Multiplying
each inequality in the sum by a positive weight preserves this property.
To show the converse, consider the half-hyperplane A = {x ∈ Rn such that 1+ a ·

x ≥ 0} and some point b ∈ Rn (see Figure 5-5). In dual space, the point b is mapped
to the half-hyperplane B = {y ∈ Rn such that 1 + y · b ≥ 0} while the region A is
mapped to a point a ∈ Rn. This shows that b ∈ A if and only if a ∈ B.
Now consider some valid inequality, represented by a half-hyperplane A. Then all

vertices vi of the configurational polyhedron (in primal space) belong to A. In dual

7How to do so will be explained in the next section.
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Figure 5-5: Illustration Accompanying Proposition 4.
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space, all vertices become half-hyperplanes Vi while A becomes a point a which belongs
to all Vi. The intersection of all Vi defines a convex polygon P . Since P is convex,
a ∈ P can be expressed as a convex combination of the vertices of P . These vertices
correspond to the edges of the configurational polyhedron in primal space. Hence, any
valid inequality can be expressed as a convex combination of elementary inequality.

Note that, in the statement of this proposition, the use of “is expressible as”
instead of “is” is important. It is not because one has found a way to express an
inequality as an affine combination with some negative weights that the inequality is
necessarily not valid. One might find another expression which involves only positive
weights. The representation of an inequality by a affine combination is generally not
unique. On the contrary, as soon as one finds an expression for an inequality which
is a convex combination one knows that this inequality must be valid.

However, in the case where the polyhedron is a simplex, there is only one way to
express a given inequality as a convex combination of elementary inequalities. In this
case, we can rewrite our proposition in a simpler form.

Proposition 5 If the dimensional polytope is a simplex, then an inequality is valid
if and only if it is a convex combinations of elementary inequality.

5.5.2 Converting Low Inequalities to High Inequalities

Up to now, we have seen that we can express a low valid inequality as a convex com-
bination of elementary low inequalities and that we can express high valid inequality
a convex combination of elementary high inequalities.

But what we really need is to test the high validity of a low inequality. We now
recall that a low inequality is just a particular case of a high inequality which happens
to be perpendicular to the low dimensional subspace. Hence, we can also express a
low inequality as an affine combination of elementary high inequalities. If this affine
combination turns out to be a convex combination, this shows that our low inequality
is in fact high valid.

How to perform such an operation? By Equation (5.9), we already have an ex-
pression of all candidate inequalities as an affine combination of elementary low in-
equalities ρα(γ) ≥ 0: ∑

γ

mγρα(γ) ≥ 0. (5.11)

A simple way to proceed is then to express each ρα(γ) term as a affine combination
of elementary high inequalities (ρβ(δ) ≥ 0) using the expansion summation property
(Equation (5.3)):

ρα(γ) =
∑

δ∈ expand(γ,α;β)

ρβ(δ). (5.12)
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Equation (5.12) can be written in a more convenient way:

ρα(γ) =
∑
δ

bγδρβ(δ) (5.13)

where

bγδ =

{
1 if δ ∈ expand (γ, α; β)
0 otherwise .

Combining Equation (5.11) and Equation (5.13) yields

∑
δ

(∑
γ

mγbγδ

)
ρβ(δ) ≥ 0. (5.14)

If
∑
γmγbγδ > 0 for all δ we have a convex combination and Equation (5.14) defines

a low inequality which high valid, as desired.

Unfortunately, things are rarely so simple, as we will see in the next sections
dealing with symmetry, unicity and practical considerations.

5.5.3 Using Symmetry

We first introduce two convenient definitions.

Definition 1 Two clusters (or two configurations) γ1 and γ2 are α-equal (denoted
γ1

α
= γ2) if and only if there is a symmetry operation s such that s(α) = α and

s(γ1) = γ2.

Definition 2 The infinite cluster describing the whole lattice is denoted by∞. Hence
equivalence under a lattice symmetry operation can be denoted by

∞
=.

The symmetry of the lattice requires that two correlation 〈σα〉 and 〈σβ〉 such that

α
∞
= β must be equal. A consequence of this is that two configurations γ1 and γ2 on
a cluster α must have the same probability of occurrence if γ1

α
= γ2. It also follows

that the inequalities ρα(γ1) ≥ 0 and ρα(γ2) ≥ 0 define exactly the same face of the
configurational polyhedron.

Hence we must regroup the terms of Equation (5.13) which contain probabilities
which should be equal due to symmetry. For example

ρ (◦) = ρ
(
◦
◦
◦
)
+ ρ

(
◦
◦
•
)
+ ρ

(
◦
•
◦
)
+ ρ

(
◦
•
•
)

must be written as

ρ (◦) = ρ
(
◦
◦
◦
)
+ 2ρ

(
◦
◦
•
)
+ ρ

(
◦
•
•
)
.
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In general, we have:

ρα(γ) =
∑
δ∈Sβ

cγδρβ(δ). (5.15)

The set Sβ is obtained taking the set of all configurations on β and successively
removing configurations which are β-equal to another one in the set until all redundant
configurations have been removed. The array cγδ gives the number of configurations
in the set expand (γ, α; β) which are β-equal to δ.

Combining Equation (5.15) with Equation (5.11) yield the desired result:

∑
δ∈Sβ

(∑
γ

mγcγδ

)
ρβ(δ) ≥ 0. (5.16)

If
∑
γmγcγδ > 0 for all δ ∈ Sβ we have a convex combination and Equation (5.16)

defines a low inequality which high valid!

5.5.4 A Simple Example

The theory presented above still cannot cover all cases in a straightforward way. But
before going on, let us illustrate the procedure with a simple example in which our
theory applies.

Take a triangular lattice with a pair cluster as the low cluster. The only non
constructible vertex v of the low configurational polytope is characterized by

ρ
(
◦
•) > 0 (5.17)

ρ
(
◦
◦) = 0 (5.18)

ρ
(
•
•) = 0. (5.19)

Following Equation (5.10) we perform an affine combination of the form

m1ρ
(
◦
◦)+m2ρ (••)− |m3| ρ (◦•) ≥ 0 (5.20)

We can expand each low configuration to a high cluster:

ρ
(
◦
•) = ρ

(
◦
•
◦
)
+ ρ

(
◦
•
•
)

ρ
(
◦
◦) = ρ

(
◦
◦
◦
)
+ ρ

(
◦
◦
•
)

ρ
(
•
•) = ρ

(
•
•
◦
)
+ ρ

(
•
•
•
)

and rewrite these equations in terms of configurations which are equivalent by sym-
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metry:

ρ
(
◦
•) = ρ

(
◦
•
◦
)
+ ρ

(
◦
•
•
)

(5.21)

ρ
(
◦
◦) = ρ

(
◦
◦
◦
)
+ ρ

(
◦
•
◦
)

(5.22)

ρ
(
•
•) = ρ

(
◦
•
•
)
+ ρ

(
•
•
•
)

(5.23)

Substituting into Equation (5.20) yields:

m1ρ
(
◦
◦
◦
)
+m1ρ

(
◦
•
◦
)
+m2ρ

(
◦
•
•
)
+m2ρ

(
•
•
•
)
− |m3| ρ

(
◦
•
◦
)
− |m3| ρ

(
◦
•
•
)
≥ 0.

Using the ordering suggested in Section 5.4.4, we start with one negative term (m3 =
−1). We then gradually add positive terms. Let us start by setting m2 = 1 and
m1 = 0:

ρ
(
◦
•
•
)
+ ρ

(
•
•
•
)
− ρ

(
◦
•
◦
)
− ρ

(
◦
•
•
)
≥ 0.

or

ρ
(
•
•
•
)
− ρ

(
◦
•
◦
)
≥ 0. (5.24)

We still have a negative term, so we try adding another positive term. Let us in-
crement m1 by one, which adds a term of the form ρ

(
◦
◦
◦
)
+ ρ

(
◦
•
◦
)
to Equation

(5.24):

ρ
(
◦
◦
◦
)
+ ρ

(
◦
•
◦
)
+ ρ

(
•
•
•
)
− ρ

(
◦
•
◦
)
≥ 0.

or

ρ
(
◦
◦
◦
)
+ ρ

(
•
•
•
)
≥ 0. (5.25)

Equation (5.25) is a convex combination of elementary high inequalities and is thus
high valid. It is also a low inequality because it was obtained by taking an affine
combination of low inequalities:

ρ
(
◦
◦)+ ρ (••)− ρ (◦•) ≥ 0.

Finally, it excludes v, desired.

The problem with this method is that we rely on intuition to decide which positive
mi to increment. In a practical algorithm, multiple alternative would have to be
considered. But the beauty of this method is that if one runs multiple copies of this
algorithm in parallel, each copy trying a different sequence of mi to increment, the
first program to find a high valid inequality will have found the tightest inequality
among the first inequalities generated by all the programs.
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5.5.5 Unicity

In the previous sections, we chose to express low inequalities as affine combination of
elementary high inequality using the expansion summation property. When the high
configuration polyhedron is a simplex, this gives us the only way to represent a given
low inequality as an affine combination of elementary high inequality. In the previous
example, the high configurational polyhedron was indeed a simplex.
On the other hand, when the high configurational polyhedron is not a simplex, we

have to try different representations of the given low inequality until we find one which
is a convex combination. How do these other representations look like? Part of the
non unicity arises because there is more than one way to place the low cluster within
the high cluster. That is, there is more than one distinct expansion summation. For
example, for a point as the low cluster and a linear triplet as the high cluster, we may
write ρ(◦) as

ρ (◦ ) = ρ(◦ ◦ ◦) + ρ(◦ ◦ •) + ρ(◦ • ◦) + ρ(◦ • •)

or as

ρ ( ◦ ) = ρ(◦ ◦ ◦) + ρ(◦ ◦ •) + ρ(• ◦ ◦) + ρ(• ◦ •).

The right hand side of these two expressions cannot be made identical by any symme-
try operation leaving the high cluster invariant. By performing all possible affine com-
binations of these two expressions we obtain all possible representation for ρ(◦) ≥ 0.
In this simple case, this is sufficient to account for the non unicity. However, in more
complex cases, other representations which do not arise from simple expansion sum-
mation have to be considered in the affine combination. How this can be done is still
not clear.
So the morale of the story is that we really need our high configuration to be a

simplex to be able to do anything with any certainty. How to choose a high cluster
such that it produces a configurational polyhedron which is a simplex? The answer is
curious: simply take the high cluster to be the infinite cluster representing the whole
lattice (β =∞):

Proposition 6 The configurational polyhedron obtained using the whole lattice (∞)
as the maximal cluster is a simplex.
Sketch of proof: Since the high cluster is the whole lattice, ρ∞(δ1) = ρ∞(δ2) if δ1

∞
=

δ2. We already have a similar result for correlations: 〈σδ1〉 = 〈σδ2〉 if δ1
∞
= δ2. Hence

we can again perform a one-to-one mapping between configuration and correlation
(δ ↔ 〈σδ〉) to show that the configurational polyhedron is a simplex. (One-to-one
mappings between infinite sets are usually a tricky matter, but the bijection used here
is so natural that it is unlikely that any serious problems show up.)

The use of an infinite high cluster also solves a problem which we have, until now,
swept under the rug: How large must the high cluster be? In our simple example, a
triplet turned out to be sufficient. But in general, we don’t know. Using a infinite
high cluster guaranties than we include all frustration effects.
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This may look like a rather theoretical result since the expansion summation now
contains an infinite number of terms. It turns out that we never need to write down
the complete expansion summation to perform the operations we need.

5.6 Implementation

This section is divided as follows. We first present of a way to represent the infinite
sums which arise when the high cluster is taken to be infinite. We then describe how
to perform addition and subtraction with these representations.

5.6.1 Representing an Infinite Sum

Ideally, we would like to convert a affine combination of the form∑
γ

mγρα(γ) ≥ 0 (5.26)

to an affine combination of the form∑
δ∈S∞

wδρ∞(δ) ≥ 0 (5.27)

and check that wδ ≥ 0. Theoretically, this operation could be performed as following.
First use the expansion summation property (which gives a unique expression in this
case), ∑

γ

mγ
∑

δ∈ expand(γ,α;∞)

ρ∞(δ) ≥ 0,

and then transform each configuration δ by some symmetry operation sδ such that
sδ(δ) ∈ S∞: ∑

γ

mγ
∑

δ∈ expand(γ,α;∞)

ρ∞(sδ(δ)) ≥ 0. (5.28)

Grouping common terms then yields the only expression of the form Equation (5.27)
which is equal to Equation (5.26).

This approach is, of course, not practical: Equation (5.28) is an infinite sum and
we must apply a different symmetry operation sδ to each (infinitely big) configuration
in the sum. We thus define an intermediate representation between Equation (5.26)
and Equation (5.27)

N∑
i=1

niραi (γi) ≥ 0, (5.29)
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where ni = ±1 and |α| ≤ |αi| <∞ (|α| is the number of sites in α) and N is finite.8

Note that configurations γi and clusters αi can be repeated for different values of i.

It looks like we are back to using a finite high cluster, with all the problems it
implies. However, there is one main difference. The sizes of the intermediate clusters
αi are not fixed and shall let them grow as needed. We thus avoid the problem of
guessing a priori the cluster size needed to take all frustration effects into account.
This will also enable us to bypass the unicity problem.9

5.6.2 General Principles

Our method proceeds as following. Instead of attempting to apply a different symme-
try operation to each term in an infinite sum, we classify the terms in a finite number
of categories and apply the same symmetry operation on all terms of a category. We
then try to cancel all negative terms with identical positive terms. If we are unable to
cancel all negative terms, it means than our classification is too coarse. We then split
some categories in smaller subcategories and apply a different symmetry operation in
each subcategory and again attempt to simplify identical terms. In the limit, if we
need to apply this subdivision process an infinite number of times, we can actually
apply a different symmetry operation to each term individually. Hopefully, we will
not need to take this process to the limit.
Equation (5.29) is a way of separating terms in categories: applying a symmetry

operation to one term ρsi(αi) (si(γi)) is equivalent to transforming all configurations
in expand (γi, αi;∞). To obtain a finer division into categories we use expansion
summation to write

ραi (γi) =
∑

δ∈expand(γi,αi;βi)

ρβi(δ)

and then apply a different symmetry operation on each term ρβi(δ). Our method
consists essentially in repeating such a sequence a expansion, application of symme-
try and cancellation of identical terms, until all negative terms have been removed.
Indeed, if ni ≥ 0 in Equation (5.29), then it represent a high valid inequality. To
show this, we note that using the expansion summation to expand configurations on
an infinite cluster and then using symmetry operation to regroup equivalent terms
does not change the signs of the terms.

5.6.3 Cancellation of Identical Terms

Let us now see precisely how this is done. We will only handle the case of a subtraction
between two terms since multiple subtractions can be performed by merely combining

8Not all inequalities can be expressed in the form of Equation (5.29) but it turns out that those
that we need can.
9Although, obviously, a given inequality has more than one representation of the form of Equation

(5.29).
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terms pairwise. We can write:

ρα1 (γ1)− ρs(α2) (s(γ2)) =
∑

δ∈expand(γ1,α1;β)

ρβ (δ)−
∑

δ∈expand(s(γ2),s(α2);β)

ρβ (δ)

where β = α1 ∪ s(α2). Now, both terms represent a list of configuration probability
defined on a common cluster β and it is a simple matter to check whether all terms
generated by −ρs(α2) (s(γ2)) can be cancelled by identical terms generated by ρα1 (γ1).
A few examples will clarify the procedure.

ρ
(
◦
•)− ρ (◦◦) = ρ

(
◦
• )− ρ (◦ ◦)

= ρ
(
◦
•
◦
)
+ ρ

(
◦
•
•
)
− ρ

(
◦
◦
◦
)
− ρ

(
◦
•
◦
)

= ρ
(
◦
•
•
)
− ρ

(
◦
◦
◦
)

ρ (◦)− ρ
(
◦
•) = ρ

(
◦
)
− ρ

(
◦
•)

= ρ
(
◦
◦)+ ρ (◦•)− ρ (◦•)

= ρ
(
◦
◦)

These two examples illustrate two important results.

Proposition 7

ρα1(γ1)− ρα2(γ2) =
∑
δ∈A

ρβ(δ)−
∑
δ∈B

ρβ(δ)

where β = α1 ∪ α2 and

A = {δ ⊂ β such that (δ ∩ α1) = γ1 and (δ ∩ α2) 6= γ2}

B = {δ ⊂ β such that (δ ∩ α1) 6= γ1 and (δ ∩ α2) = γ2} .

Proof: The only configuration δ that commonly belongs to expand (γ1, α1; β) as well
as expand (γ2, α2; β) is the one for which δ∩α1 = γ2 and δ∩α2 = γ2, hence the result.

This proposition essentially tells which terms survive when we can partially overlap
the two configurations γ1 and γ2 so that the type of atom agrees at each site which
belongs to both α1 and α2.

Proposition 8 If α1 ⊂ α2 and γ2 ∩ α1 = γ1 then

ρα1(γ1)− ρα2(γ2) =
∑
δ∈A

ρβ(δ)

where β = α1 ∪ α2 and

A = {δ ⊂ β such that (δ ∩ α1) = γ1 and (δ ∩ α2) 6= γ2}
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Proof: Application of the Proposition 7 gives the desired result.

This proposition tells us that no negative term survives whenever we can find a
configuration γ1 on a subcluster α1 of a cluster α2 on which configuration γ2 is defined.

5.6.4 Simple Example

Proposition 7 appears to be just procrastinating the problem: a difference is still
expressed as a difference. The only improvement is an increase of the cluster sizes.
When a configuration is defined on a bigger cluster, it is more likely that Proposition
8 applies. For example, consider the expression

−ρ
(
◦
•)+ ρ (◦◦)+ ρ (••) ≥ 0.

Since there is not much we can say about this expression, let us try to combine the
first two terms using some symmetry operation

−ρ
(
◦
• )+ ρ (◦ ◦)+ ρ (••) ≥ 0

and Proposition 7

−ρ
(
◦
•
•
)
+ ρ

(
◦
◦
◦
)
+ ρ

(
•
•) ≥ 0.

Again using symmetry and exchanging terms yields

ρ
( •
•
)
− ρ

(
◦
•
•
)
+ ρ

(
◦
◦
◦
)
≥ 0

which lets us use Proposition 8 to obtain:

ρ
(
•
•
•
)
+ ρ

(
◦
◦
◦
)
≥ 0,

proving that the expression represents a high valid inequality.

5.6.5 Choosing the Best Symmetry

Up to now we have used intuition to figure out which symmetry to use on the configu-
rations before using Propositions 7 and 8 so that the maximum number of terms will
cancel. But there is a rigorous way to do so. We first define a measure of how close
we are to our goal of eliminating all negative terms. We will choose the symmetry
operation which minimizes this measure.
The raw number of negative terms is clearly not a good measure. For example,

take a cluster of n sites, in which c configurations have negative weight. If one expands
these configuration on a cluster of size m > n, one will have 2m−nc configurations of
negative weight without having done anything. A proper measure of successM would
then be the ratio of the number of configuration of negative weight10 over the total

10The number of term of the form −ρα(γ) in the expression whose distance to the goal is to be
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number of possible configuration on a cluster of that size. (Repeated configuration
are counted more than once in the numerator while symmetry-related configuration
are considered different in the denominator.) More precisely, in Equation (5.29) we
have

M =
∑

i such that ni<0

−ni
2|αi|

. (5.30)

Let us consider which choices of symmetry operation have no effect on M in the
expression

ρα1(γ1)− ρs(α2)(s(γ2)).

• Suppose that we apply a symmetry operation s to α2 and γ2 so that α1 and
s(α2) do not overlap. Application of Proposition 7 shows that

M =
2α1

2|α1|+|α2|
=
1

2|α2|

because no term cancels out.

• Suppose s is such that α1 and s(α2) overlap but such that γ1 ∩ (α1 ∩ s(α2)) 6=
s(γ2)∩ (α1∩s(α2)) (i.e., the two configurations do not match at the sites where
the clusters overlap). Then application of Proposition 7 yields the same result

M =
2α1\s(α2)

2|α1∪s(α2)|
=
1

2|α2|
.

On the other hand, if s is such that α1 and s(α2) overlap and such that γ1∩ (α1 ∩
s(α2)) = s(γ2) ∩ (α1 ∩ s(α2)) then

M =
2|α1\s(α2)| − 1

2|α1∪s(α2)|
.

This result arises from the fact that configuration s(γ2) expands to a set of 2
|α1\s(α2)|

configurations out of which only one is cancelled (see Proposition 7). This expression
can be rewritten as:

M =
1− 2|α1∩s(α2)|

2|α1|

2|α2|
.

At constant |α1| and |α2|, the bigger |α1 ∩ s(α2)| is, the smaller is M . (It the limit
case where α1 ⊂ s(α2), M = 0, as expected from the conclusion of Proposition 8.)
Hence, we seek to overlap cluster α1 and s(α2) as much as possible while making sure
that the configurations on both clusters agree at their intersection. If the overlap is

evaluated.
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complete (α1 ⊂ s(α2)), then ρα1(γ1)− ρα2(γ2) can be expressed as a sum containing
only positive terms.
This result tells us how to evaluate the “convexity” of a difference of two terms.

In a practical algorithm, this procedure would be repeated over and over. First start
with a positive and negative term. If all negative terms cannot be cancelled add a
new positive term to combine the remaining negative terms. The process is repeated
until all negative terms have been removed and a high valid inequality Q ≥ 0 has
been found.
To obtain yet tighter inequalities, if they are needed, we can add another negative

term to Q, perform a few cancellation with existing positive term and then add on
new positive terms if they are needed. We can even loop back one again at the
beginning of this paragraph if no ground state has been found yet. This process fits
nicely with the method outlined at the end of Section 5.4.4.

5.6.6 Avoiding Infinite Loops

This section is somewhat technical and can be skipped at first reading. It is included
for completeness.
We have to handle a subtle question which we have ignored in the previous section:

Shouldn’t we try to apply Proposition 7 again and again before attempting to add
new positive terms? 11 For example, after writing

−ρ
(
◦
• )+ ρ (◦ ◦) = −ρ (◦••)+ ρ (◦◦◦)

we could apply Proposition 7 again to obtain

−ρ
(
◦
◦
◦
)
+ ρ

(
◦
•
•
)
= −ρ

(
◦
◦
◦
◦
•
)
− ρ

(
◦
◦
◦
•
◦
)
− ρ

(
◦
◦
◦
◦
◦
)

+ρ
(
◦
•
◦
•
•
)
+ ρ

(
•
◦
◦
•
•
)
+ ρ

(
•
•
◦
•
•
)
.

We can repeat the process an infinite number of times and, at each step, M decreases!
(It never never goes to zero, though.)
We thus need a criterion to determine whether a subtraction of the form ρα1 (γ1)−

ρα2 (γ2) cannot be expressed as a sum of term. Here are cases where it is surely not:

• when α1
∞
= α2 and γ1 6

α1= s(γ2) where s is such that s(α2) = α1 (because two
different elementary inequality on the same cluster necessarily have different
expression in the form of Equation (5.27));

• when |α1| > |α2| (because there is simply not enough positive terms to cancel
all negative terms).

There are lot of other cases but they are cumbersome to describe and to prove. In
fact, unless really exceptional circumstances occur,12 repeatedly applying Proposition

11Recall that adding new terms decreases the tightness of the generated inequality.
12The only problematic case for which a proof as not yet been found is when there exist a symmetry
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7 never allows us to remove all negative term if it did not work at the first step. Thus,
almost surely, the conclusion is: use Proposition 7 once and upon failure to remove
all negative terms, try adding new positive terms.

5.6.7 Optimization

In Proposition 7 we perform cancellation only one term at the time. However, there
is a way to perform many cancellations in one operation. Let us first illustrate the

method in the case of the honeycomb “lattice”. If we use α = �
�
�� as the low

cluster,13 one of the non constructible vertex is characterized by:

ρ

(
◦
◦
•◦

)
> 0

ρ

(
•
◦
◦•

)
> 0

and all other configurations have zero probability. Thus, the set of all configurations
of positive probability is

Z =

{
◦
◦
•◦ , •

◦
◦• , •

•
◦◦ , ◦

•
◦•

}

while the set of configuration of zero probability is just the complement of Z in the

set of all configurations on cluster �
�
�� . We seek to cancel terms of the form −ρα(γ)

with γ ∈ Z by terms of the form ρα(γ) with γ 6∈ Z.

Suppose we want to cancel all negative terms generated by

−ρ
(◦
•
◦•
)
. (5.31)

We first find the symmetry operation s such that cluster s
(�
�
��
)
overlaps cluster

�
�
�� the most. Of course, if s is identity, the best overlap is obtained. But then it is

impossible to find a configuration not in Z which fits on top of a configuration in Z.

We then try the next best thing: a s such that s

(
�
�
��

)
∪ �
�
�� is the cluster

�
�
��
�
�
.

operation s such that we simultaneously have γ1∩ (α1 ∩α2) = γ2 ∩ (α1 ∩α2) and γ1∩ (α1 ∩s(α2)) =
s(γ2) ∩ (α1 ∩ s(α2)) and α1\α2 6= ∅ and α1\s(α2) 6= ∅ and γ1\α2 = ∅ and γ1\s(α2) = α1\α2. If
this is not the case, one can show that either the probability of configuration γ1 on cluster ∞ or of
configuration (∞\α1) ∪ γ1 on cluster ∞ cannot be cancelled.
13We denote cluster sites which could host either ◦ or • atom by �.
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Let us expand Equation (5.31) on this larger cluster:

−ρ
(◦
•
◦•
◦
◦

)
− ρ

(◦
•
◦•
◦
•

)
− ρ

(◦
•
◦•
•
◦

)
− ρ

(◦
•
◦•
•
•

)
. (5.32)

We can identify, on subcluster ��
�
�
, a configuration which is not in Z for all terms

but the first one. Therefore, by Proposition 8, we can cancel these terms by adding
three terms to Equation (5.31):

−ρ
(◦
•
◦•
)
+
(
ρ
(
◦•
◦
•

)
+ ρ

(
◦•
•
◦

)
+ ρ

(
◦•
•
•

))
. (5.33)

One can check that, if we expand each of these terms on the larger cluster
�
�
��
�
�
, we

obtain an expression which contains only one negative term: −ρ
(◦
•
◦•
◦
◦

)
. This term

cannot be cancelled using Proposition 8 because it has a configuration which is in Z

on subcluster ��
�
�
. This suggests a very simple scheme to directly find which negative

terms are remaining without performing cancellations one at the time. All remaining
negative terms are obtained by finding all possible ways of placing configurations

belonging to Z on subcluster ��
�
�
such that the added atoms agree with the atoms

already placed on subcluster
�
�
�� . Hence, in our case, the only remaining negative

term is −ρ
(◦
•
◦•
◦
◦

)
.

Applying expansion summation and cancellation of identical terms lets us obtain
another convenient result. We can rewrite Equation (5.33) in a shorter form:

−ρ
(◦
•
◦•
)
+
(
ρ
(
◦•
)
− ρ

(
◦•
◦
◦

))
. (5.34)

It follows that, at any time, the state of the computations can be described by

• an inequality of the form of Equation (5.34) which is expressible in term of
probability of occurrence of configurations on subclusters of the low cluster;

• a list of configurations on larger clusters corresponding to negative terms which
have not yet been cancelled.

Let us now generalize these results. Start with a configuration in Z on a cluster
α′ = α. Find the symmetry s such that cluster s(α) overlaps α′ the most. Add,
to the inequality, the probability of occurrence of the configuration appearing on
cluster α′ ∩ s(α). Subtract, from the inequality, all the probability of occurrence of
configurations in Z which we can place on s(α) without conflicting with the atoms
already placed on α′. The negative terms we still have to cancel are obtained by
overlapping the configuration on α′ and all configurations in Z which we could place
on s(α). Now set α′ = α ∪ s(α) and repeat the process until no more negative terms
remain. More formally, we have the following.
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Proposition 9 Let Z be the set of configurations on some low cluster α which have
a positive probability of occurrence. Suppose we want to remove as many negative
terms as possible (in the sense of Equation (5.30)) in an expression of the form

−ρα′(γ
′)

by using only one symmetry operation s and the minimum number of positive terms.
The optimum way to proceed is to write

−ρα′(γ
′) + ρν(γ

′ ∩ ν)−
∑
γ∈F

ρs(α)(s(γ)) (5.35)

where

• ν = α′ ∩ s(α)

• F =
{
γ ∈ Z such that γ′ ∩ ν = s(γ) ∩ ν

}
• s is

– such that F is empty;

– or, if this is not possible, such that |F | is minimum under the constraint
that s(α) 6⊂ α′.

Moreover, Equation (5.35) expands to∑
δ∈A

ρβ(δ)−
∑
δ∈B

ρβ(δ) (5.36)

where

• β = α′ ∪ s(α)

• A = {δ ⊂ β such that (δ ∩ α′) 6= γ and (s−1(δ) ∩ α) 6∈ F and (δ ∩ ν) = (γ ∩ ν)}

• B = {δ ⊂ β such that (δ ∩ α′) = γ′ and (s−1(δ) ∩ α) ∈ F} .

(Note that if F is empty, no negative term remains.)

5.6.8 Merging the Construction Process with Inequality Gen-
eration

The result of the previous section is very useful for two reasons. First, at a given
vertex, there are generally only a few configurations γ of positive probability (γ ∈ Z)
even though there might be a large number of configurations with zero probability
(γ ∈ Z). Hence, by expressing our method only in term elements of Z, we have
significantly reduced the complexity of our algorithm.
Second, we have merged the computation of new inequalities with the reconstruc-

tion process. To see this, we note that we obtain all negative terms by finding all
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possible ways of overlapping configuration of positive probability so that the atom
type match at the overlapping sites. This is exactly what one does to construct a
structure from the probabilities. We even have the following result.

Proposition 10 Repeated application of Proposition 9 is guaranteed to remove all
negative term after a finite number of steps if and only if vertex v is non constructible.

Proof: If the process stops, we have found an inequality excluding the vertex v.
If the process never stops, the negative terms we have not been able to cancel are
probability of occurrence of configurations on clusters whose size tends to infinity.14

These configurations are obtained by overlapping configurations of positive probability
in all possible ways which makes identical atoms superpose. Hence, in the limit, each
negative terms −ρ∞(δ) define a structure15 δ represented by vertex v.

In the proof of this proposition, we have assumed that once we have found a
structure made only of configurations in Z, this structure automatically has the cor-
relations values obtained at vertex v. Since this is not obvious, we need to prove the
following.

Proposition 11 All structures associated with a vertex v of the low configurational
polyhedron can be constructed by finding all possible ways to overlap low configurations
having a positive probability of occurrence. (And the correlation values of the resulting
structures will always match those of vertex v.)

Proof: Vertex v is uniquely defined by stating which low configurations have a
zero probability (or equivalently, which low configurations have a positive probability).
We attempt to construct vertex v by only using our knowledge of the set Z of all low
configurations of positive probability. We need to explore the two possible alternatives.

Suppose we have found a way to overlap configurations in Z to build a structure
and that all configurations in Z have a strictly positive probability of occurrence in
the structure. Any constructible structure is associated to a point in the polyhedron.
Yet, vertex v is the only point in the low polyhedron for which configurations in Z
are the only one to have positive probability. Therefore, the structure obtained must
necessarily have the appropriate correlations values.

Suppose we have found a structure by overlapping configurations in Z but that
not all configurations in Z have a strictly positive probability of occurrence in the
structure. Hence we have more configurations of zero probability than in the previous
case. Any real structure must correspond to a point in the polytope. Yet, there are no
points in the polytope which are defined by so many configurations of zero probability.
Vertex v is the only point where all configurations not in Z have zero probability and
we would need a point where even more configurations have zero probability. This is
impossible.

14we can always make these clusters grow at comparable speed in every directions
15A structure is configuration defined on cluster ∞
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5.6.9 Example

Let us now apply Proposition 9 to prove non constructibility of one vertex in the
case of the honeycomb “lattice”. We recall that one of the non constructible vertex
is defined by

Z =

{
◦
◦
•◦ , •

◦
◦• , •

•
◦◦ , ◦

•
◦•

}
.

In the following example, we will show the current value of the inequality we are
building at each application of Proposition 9. These inequalities will be expressed in
term of configurations on subclusters of the low cluster (as in Equation (5.35)). We
will not need the complete expression of these inequalities on larger clusters (as in
Equation (5.36)). We will only keep track of the negative terms since these are the
ones which pose a problem. In Figure 5-6, we list the configurations γ associated with
negative terms −ρ(γ) at each application of Proposition 9. This example shows only
one of the many possible ways through which an inequality can be found. A practical
algorithm would have to explore many possible alternatives.

In the following equations, “. . . ” stands for all the terms of the previous inequality.

1. We start with some (arbitrarily chosen) configuration in Z:

−ρ

(
•
◦
◦•

)
≥ 0.

2. There many ways to overlap the next cluster. We choose among the ones which
minimizes the number of negative terms (i.e., which minimizes the number of
alternative way to decorate the new cluster):

. . .+ ρ

(
◦
•
)
− ρ

(
◦
◦
•◦

)
≥ 0.

3. We can do the same at the other similar locations:

. . .+ ρ

(
◦
•
)
− ρ

(
◦
◦
•◦

)
≥ 0,

4.

. . .+ ρ

(
◦
◦
)
− ρ

(
•
◦
◦•

)
≥ 0,

5.

. . .+ ρ

(
•◦

)
− ρ

(
◦
◦
•◦

)
≥ 0.
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1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

Figure 5-6: Example of the Use of Proposition 9 (see text).
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6. We can now have a three sites overlap, which certainly gives the maximum
amount of cancellation:

. . .+ ρ

(
◦
◦•

)
− ρ

(
•
◦
◦•

)
≥ 0.

7. We are back to the usual two sites overlap:

. . .+ ρ

(
◦
•
)
− ρ

(
◦
◦
•◦

)
≥ 0.

8. There are now many different ways to place the next cluster which all seem as
good as the other. We select the location which makes the growing structure as
“round” as possible.16 (We intuitively know that frustration is better detected
by round cluster than by long and thin ones.)

. . .+ ρ

(
•
◦
)
− ρ

(
◦
•
◦•

)
− ρ

(
•
•
◦◦

)
≥ 0.

Note that two configurations could fit in this case and we now have two negative
terms to cancel.

9. The first negative term contains three adjacent ◦ atoms on one subcluster. No

configuration belonging to Z could fit there. Hence we add the term ρ

(
◦◦◦

)
without subtracting any other term. Moreover, we do not generate new negative
terms (we encounter the case where “F is empty” in Proposition 9).

. . .+ ρ

(
◦◦◦

)
≥ 0.

10. The other negative term also has three adjacent ◦ atoms. For the same reason,
we have:

. . .+ ρ

(
◦◦◦

)
≥ 0. (5.37)

16“Roundness” can be evaluated by the ratio of the number of sites lying at the boundary of the
growing structure to the total number of sites.
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Therefore, the inequality

−ρ

(
•
◦
◦•

)

+ρ

(
◦
•
)
− ρ

(
◦
◦
•◦

)
+ ρ

(
◦
•
)
− ρ

(
◦
◦
•◦

)

+ρ

(
◦
◦
)
− ρ

(
•
◦
◦•

)
+ ρ

(
•◦

)
− ρ

(
◦
◦
•◦

)

+ρ

(
◦
◦•

)
− ρ

(
•
◦
◦•

)
+ ρ

(
◦
•
)
− ρ

(
◦
◦
•◦

)

+ρ

(
•
◦
)
− ρ

(
◦
•
◦•

)
− ρ

(
•
•
◦◦

)

+ρ

(
◦◦◦

)
+ ρ

(
◦◦◦

)
≥ 0.

is valid and proves that vertex v is not constructible. We notice that what makes our
procedure terminate agrees perfectly with our intuitive notion of frustration: finding
a subcluster on which we are not able to fit any configuration belonging to Z.
The procedure illustrated above is guaranteed to work in all cases. It either

constructs a structure or constructs an inequality which proves non constructibil-
ity. Moreover, the complexity of the method is not worse than the one of the usual
construction process from the probabilities. This is a lot faster than the conventional
way of dealing with frustrations. In our example with the honeycomb “lattice”, one
would need a 13 point cluster to account for the frustration we have detected. The
configurational polyhedron generated by this cluster has at least 1000 faces which
makes the task of projecting this polyhedron to a low dimensional space intractable.
In contrast, we were able to perform our computations by hand.

5.6.10 Improved Method

The method presented in the last section is not perfect. It can generate inequalities
which prove non constructibility but it is not guaranteed to generate all the tightest
inequalities one would need to find the actual ground state.
The source of the weakness is that we have neglected all the positive terms gen-

erated when we apply Proposition 9. These positive terms could be used to cancel
some of the negative terms without adding new positive terms. The problem is that
there are many positive terms. Fortunately there is a short hand way to represent
them.
Let us take the example which lead to Equation (5.34):

−ρ
(◦
•
◦•
)
+
(
ρ
(
◦•
)
− ρ

(
◦•
◦
◦

))
.

Can we find a simple expression for the positive terms generated by this expression

when we expand each term to cluster
�
�
��
�
�
? Yes, we simply note the following.
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• All positive terms come from the second term and they must be of the form

ρ
(�
�
◦•
�
�

)
where � represents either ◦ or •.

• They cannot be of the form ρ
(◦
•
◦•
�
�

)
because they would be cancelled by the

first term.

• They cannot be of the form ρ
(�
�
◦•
◦
◦

)
either because they would be cancelled

by the last term.

These three facts exactly define all positive terms and require less memory to store
than the 9 positive terms themselves. In fact, in Proposition 9, the set A is defined
in this way. Any positive term generated by Proposition 9 can be expressed in this
form: two ends which should not fit a given configurations and a middle part which
should fit a given configuration.
Another attractive property of this representation is that it is easy to detect if a

positive term expressed in this form cancels negative terms. We will not delve into
the details of this procedure because it is similar in concept to what we have done so
far, except that there are more cases to handle.
Taking the positive terms into account makes the algorithm somewhat more com-

plex. Before adding new positive term, we scan through existing positive terms to
see if they would fit somewhere. It is just as if, beside set Z, we had access to other
configurations to fit in our growing structure.
The order of complexity of the algorithm does not suffer too much from this

addition. For example, in our example of the honeycomb “lattice”, it is still possible
to perform the computation by hand to generate inequalities which enable us to find
2 of Kanamori’s ground states [41]. The ground states we found would have required
a 13 point cluster by traditional means.
To make sure this method can be applied to more complex problems we need to

handle the so-called branching problem.

5.6.11 Branching

As we attempt to construct a structure, we have to consider a lot of different alter-
natives. We can branch on

• where to overlap the next cluster;

• which configuration to use to decorate that new cluster;

• which configuration to subtract (at the initial step, and maybe later on, as was
explained in Section 5.4.4).

The second type of branching is essential. We really have to explore all cases:
every possibility corresponds to a negative term which has to be cancelled. However,
the two other types of branching are facultative: if we had a way to predict which
branch will yield the tightest inequality, we could completely avoid branching.
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We can use our measure M of how close we are to the complete removal of all
negative terms (see Section 5.6.5) as a guide to select the most promising branches. Of
course, this scheme makes the method approximative: some apparently non promising
alternatives may turn out to be promising later on. We thus keep a list of the p most
promising alternatives instead of keeping only the most promising alternative. At
each step, we perform a small amount of computation in every promising branch.
When a new facultative branching occurs, the least promising branches are deleted
to make room for the new, more promising branches. We never explore more than p
alternatives at any time. The situation is analogous to having p identical programs
running in parallel, each one testing a different branching sequence. As we had
discussed in Section 5.4.4, the first program to yield a valid inequality will yield a
tighter inequality than the other programs when they eventually find one. We just
hope that an exact answer is still possible without using a too large p.

5.7 Conclusion

We introduced a method which is capable of proving either the constructibility or the
non constructibility of a given vertex. Its order of complexity is comparable with the
one of the usual construction process.
A more involved algorithm seems to be able to find all valid inequalities which

exclude a given vertex. It is guaranteed that our method will never fail by giving us
a wrong inequality. The only possible problem could be that it may not be able to
give us all the inequalities we need. From a theoretical point of view, we are missing
a rigorous proof that all inequalities which can be obtained by a cluster of finite size
are obtainable by our method. The only reason why this could be not true was the
subject of Section 5.6.6. But the circumstances leading to a failure of our method
seem very unlikely. (No counterexample has been found yet.)
Although our method appears to save a lot of computations, it still has an expo-

nential order of complexity. However, we have a way to control the computation time
by only exploring the most promising alternatives in a tree of possible computations
leading to valid inequalities. The challenge is to devise a program that possesses the
required “intuition” to explore only these promising options.
For at least one example, the capabilities of this new method are surprising. We

were able to obtain a 2 of Kanamori’s ground state on the honeycomb “lattice”
(see, for instance, [41]). These computations were performed manually where as
the computation of the v-matrix for a cluster large enough to account for the same
frustration effects took about 20 minutes of computer time.
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Chapter 6

Conclusion

A long standing limitation of first-principles phase diagram calculations is the diffi-
culty to account for the impact of lattice vibrations on phase stability. A thorough
review of the literature on this topic has been presented.
In this thesis, a clear picture of the origin of vibrational entropy differences be-

tween phases in an alloy system has been developed. Vibrational entropy change can
be attributed to the changes in bond stiffness associated with the changes in bond
length that take place during a phase transformation. This understanding was made
possible by accurate first-principles calculations of vibrational entropy differences.
These calculations enabled us to develop controlled approximations that allow the
inclusion of vibrational effects in phase diagram calculations at a reasonable compu-
tational cost.
This thesis also address an additional issue regarding the calculation of vibrational

properties from first principles. The use of the well-known Local Density Approxi-
mation results in a systematic underprediction of lattice parameters. We show that
this bias, which has an important impact on calculated vibrational properties, can be
corrected through a simple semi-empirical scheme. The success of such a simple ap-
proach also brings useful insight into the behavior of the exact exchange-correlation
potential in a solid state system, a quantity that is central to Density Functional
Theory.
This thesis brought light onto another intricate problem associated with phase

diagram calculations: the ground state problem. Although the technique to find
ground state is well established, its practical implementation remains computation-
ally demanding. A new useful connection between the construction of the so-called
“configurational polytope” and the geometric problem of constructing a structure
that has a given correlation vector has been presented. There is good hope that such
intuition will lead to practical solution to the ground state problem.
While very useful results have been obtained in all the aspects explored, the

main contribution of this thesis is clearly the development of the “bond stiffness
vs. bond length” interpretation which both summarizes the key phenomenon driving
vibrational entropy changes and provides a practical tool to model them.
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Appendix A

Selected topics related to lattice
vibrations in alloys

A.1 The absence of mass effects in the high-tempe-

rature limit

In the high-temperature limit, the vibrational entropy is determined by the product
of the frequencies of all normal modes of vibrations νm, which can be related to the
eigenvalues λm of the 3N×3N dynamical matrix D of the system (up to a constant):1

∑
m

ln (νm) = ln

(∏
m

νm

)
=
1

2
ln

(∏
m

λm

)
+ const

=
1

2N
ln (detD) + const

Using the properties of determinants, we can write:

1

2N
ln (detD) =

1

2N
ln
(
det
(
M1/2ΦM1/2

))
=

1

2N
ln (det (Φ) det (M)) =

1

2N
ln

(
det (Φ)

∏
i

M3
i

)

=
1

2N
ln (det (Φ)) +

3

2N

∑
i

lnMi

where M is the 3N × 3N diagonal matrix of all the N atomic masses of the system
(each repeated three times) while Φ is 3N × 3N the matrix obtained by regrouping
all the 3×3 force constant tensors Φ (i, j) in a single matrix (analogously to Equation

1To simplify the exposition and avoid the problem that the dynamical matrix has three zero
eigenvalues associated with the possibility of a rigid translation of the system, we assume that some
of the atoms of the system are attached to a fixed point of reference by a weak spring. In the
thermodynamic limit, this assumption becomes inconsequential.
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(2.11)). Now consider the change in the value of
∑
m ln (νm) when an NA atoms of

type A and NB atoms of type B are combined to form an alloy. Let the subscripts
AB, A and B respectively denote the properties of an A(NA/N)B(NB/N) alloy, a pure
crystal of element A and a pure crystal of element B.

∆

(∑
m

ln (νm)

)
=

∑
m

ln
(
νABm

)
− xA

∑
m

ln
(
νAm
)
− xB

∑
m

ln
(
νBm
)

=
1

2
ln
(
det
(
ΦAB

))
+
3

2
NA lnMA +

3

2
NB lnMB

−
1

2
ln
(
det
(
ΦA
))
−
3

2
NA lnMA −

1

2
ln
(
det
(
ΦB
))
−
3

2
NB lnMB

= .
1

2
ln
(
det
(
ΦAB

))
−
1

2
ln
(
det
(
ΦA
))
−
1

2
ln
(
det
(
ΦB
))

All the terms involving masses exactly cancel one another.

A.2 A simple model of anharmonicity

Two assumptions are made. First, the elastic energy of the motionless lattice is
assumed quadratic in volume:

E∗ (V ) =
B

2V0
(∆V )2

where B is the bulk modulus, V0 the equilibrium volume at 0K (ignoring zero-point
motion) and ∆V = V − V0. Second, the high temperature limit of the vibrational
free energy is used:

Fvib (T, V ) = kBT
∑
i

ln

(
hνi

kBT

)

In this approximation, the volume-dependence of Fvib takes on a particularly simple
form:

∂Fvib (T, V )

∂V
=
3NkBTγ

V

where

γ =
1

3N

3N∑
i=1

V

νi

∂νi

∂V

is an average Grüneisen parameter. In the high-temperature limit, an average Grünei-
sen parameter can easily be defined, because the population of the phonon modes is
no longer temperature-dependent, and any change in entropy can be unambiguously
attributed to shifts in phonon frequencies. At lower temperatures, the changes in
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phonon population would need to be accounted for as well.
If we assume that the volume-dependence of the vibrational free energy is linear

in volume, we have:

F (T, V ) = E∗ (V ) + Fvib (T, V )

= E∗ (V ) + Fvib (T, V0) +
∂Fvib

∂V

∣∣∣∣
V=V0

∆V

=
B

2V0
(∆V )2 + Fvib (T, V0) +

3NkBTγ

V0
∆V.

Minimizing this expression with respect to ∆V yields:

∆V

N
=
3kBTγ

B

where 3kBTγ
B
is the coefficient of volumetric thermal expansion. The resulting tem-

perature dependence of the free energy (for one given configuration ~σ) is given by

F (T )

N
=
F (T, V0)

N
−
(3kBTγ)

2

2B (V0/N)
.

It is interesting to note that half of the vibrational free energy decrease due to thermal
expansion is cancelled by the energy increase of the motionless lattice. Hence, vibra-
tional entropy differences originating from differences in thermal expansion between
phases have, relative to other sources of vibrational entropy changes, half the effect
on phase stability.

A.3 Modeling the disordered state

Although in phase diagram calculations, the use of the cluster expansion bypasses the
problem of directly calculating the vibrational entropy of a disordered phase, there
are cases where it is of interest to directly calculate the vibrational properties of the
disordered state. For instance, in studies that seek to assess the importance of lattice
vibrations [8, 115, 136, 106], it is instructive to compute the vibrational entropy
change upon disordering an alloy, since this quantity can be straightforwardly used
to estimate the effect of lattice vibrations on transition temperatures with the help
of Equation (2.4). Here are the most common methods used tomodel the disordered
state.
Perhaps the most obvious and brute force approach to modeling the disordered

state is the use of a large supercell where the occupation of each site is chosen at
random. This approach was chosen in all EAM calculations [2, 8, 115, 90] as well as
in other investigations [121]. Unfortunately, it is generally not feasible in the case of
ab initio calculations.

The virtual crystal approximation (VCA) consists of replacing each atom in a
disordered alloy by an “average” atom whose properties are determined by a con-
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centration weighted average of the properties of the constituents. In the limit where
the chemical species have nearly identical properties, this approximation is justified.
This model has been commonly used to interpret neutron scattering measurements
of phonon dispersion curves in the case of disordered alloys [49, 95]. It has also
been used in a some theoretical investigations [32, 110]. However, the virtual crystal
approximation has been repeatedly shown to be insufficiently accurate for the pur-
pose of calculating differences in vibrational entropies between distinct compounds
[8, 115, 121, 96]. Its weaknesses are numerous: It is unable to model “bond pro-
portion” effects, volume effects and local relaxations. It also fails to give a mass-
independent high temperature limit.

Special Quasirandom Structures (SQS) [151] combine the idea of cluster expansion
with the use of supercells. SQS are the periodic structures that best approximate the
disordered state in a unit cell of a given size. The quality of a SQS is described
by the number of its correlations that match the ones of the true disordered state.
There is thus a direct connection between cluster expansions and SQS: If there exists
a truncated cluster expansion that is able to predict properties.of the disordered state
there exists an SQS that provides an equally accurate description of the disordered
state.

SQS have been very successfully used to obtain electronic and thermodynamic
properties of disordered materials (see, for example, [63]).The accuracy of the SQS
approach in the context of phonon calculations has been benchmarked using embed-
ded atoms potentials which allow for the comparison with the “exact” vibrational
entropy of the disordered state with a large supercell [90]. It has been found that,
for the purpose of calculating vibrational properties, an SQS having only 8 atoms
in its unit cell already provide a good approximation of the disordered state in the
case of an fcc alloy at concentration 3/4. While the performance of this small SQS
is remarkable in a model system where local relaxations are disallowed, it tends to
degrade somewhat when relaxations are allowed to take place. This effect can nat-
urally be explained by the fact that relaxations are known to introduce important
multibody terms in the cluster expansion, which translates into the requirement that
the SQS must correctly reproduce the corresponding multibody correlations.

The success of small SQS opened the way for the use of more accurate energy
models to calculate vibrational properties of disordered alloys. SQS have been applied
to the ab-initio calculation of vibrational entropy in disordered Ni3Al and Pd3V alloys
[136, 137]
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A.4 The Einstein model

In the Einstein model of a solid, the free energy, in the high temperature limit, is
given by

F = kBT ln

(
h

kBT

∏
i

νi

)

=
kBT

2
ln

(
h

kBT
detD

)

=
kBT

2
ln

(
h

kBT
det
(
M1/2ΦM1/2

))

=
kBT

2
ln

(
h

kBT
detM detΦ

)

where D and Φ are, respectively, the 3N × 3N dynamical matrix and force constant
matrix of the system while M is the matrix of the masses:

Mij = δijMj .

It can be shown [134] that for any positive definite matrix Φ

det Φ ≤
∏
i

Φii,

implying that

F ≤
kBT

2
ln

(
h

kBT

∏
i

MiΦii

)

where the right-hand side expression is nothing but the free energy of the system in
the Einstein approximation. A lower bound can be obtained by a similar technique,
by using the inverse of the force constant matrix

det Φ ≥

(∏
i

(
Φ−1

)
ii

)−1
.

The interpretation of the inverse Φ is simple: It is the matrix that maps forces F
exerted on the atoms to the resulting displacements u of the atoms.

u = Φ−1F

While Φii is related to the oscillation frequency of a single atom when all other atoms
are held in place, ((Φ−1)ii)

−1
is related to the oscillation frequency of an atom i when

all surrounding atoms are allowed to relax so that the force exerted on them remains
zero as atom i moves. Atom i has mass Mi while all other atoms are considered
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massless and relax instantaneously. Atoms located infinitely far away from atom i
are held in place with an infinitesimal force.
In conclusion, the free energy of a system is bounded by above and by below by

the free energy of two Einstein-like systems:

kBT

2
ln

(
h

kBT

∏
i

Mi
((
Φ−1

)
ii

)−1)
≤ F ≤

kBT

2
ln

(
h

kBT

∏
i

MiΦii

)

A.5 Derivation of the “bond proportion” model

This appendix shows that, in an important class of systems, the bond proportion
model is in fact the first order approximation to the true change in vibrational entropy
induced by a change in the proportion of the different types of chemical bonds.
The alloy system is assumed to satisfy the following conditions:

• the high temperature limit is appropriate;

• the nearest-neighbor force constants can be written as Φ (i, j) = kσiσj φ (i, j)
where kσiσj denotes the (scalar) stiffness of the spring connecting sites i and j
with occupations σi and σj while the φ (i, j) are dimensionless spring constant
tensors. The φ (i, j) are assumed equivalent under a symmetry operation of the
space group of the parent lattice;

• all force constants kσiσj are such that

kσiσj√
kσiσikσjσj

� 1.

Consider a d-dimensional solid made of N atoms connected by springs of char-
acterized by symmetrically equivalent tensors kφ (i, j). Without loss of generality,
the masses of all atoms are set to unity since the formation entropies in the high
temperature limit are independent of the atomic masses (see Appendix A.1). In the
high temperature limit, the vibrational free energy per atom is given by:

Fvib =
kBT

2N

∑
m

lnλm (A.1)

where the sum is taken over the nonzero eigenvalues λm of the dynamical matrix D
of the system. (The zero eigenvalues correspond the modes where the whole crystal
moves rigidly. In the thermodynamic limit, these few missing degrees of freedom are
inconsequential.)
Because all springs in the system are equivalent to each other, matrix D can be

written as

D = kC
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where C is a matrix of dimensionless geometrical factors independent of k but specific
to the type of lattice. From this expression ofD, it follows naturally that eigenvectors
of D are independent of k and that its eigenvalues can be written as

λm = klm

where the lm are geometric factors independent of k.

Consider what happens to Svib when the stiffness of one of the springs is changed
from k to k + ∆k. Let ∆D denote the corresponding change in matrix D. To the
first order, the resulting changes in the eigenvalues are given by:

∆λm = u
′
m∆Dum

where um is the (dimensionless) eigenvector of D associated with eigenvalue λm. Since
D is linear in the spring constants, we can write

∆D = ∆k B

where B is matrix of geometrical factors independent of k and ∆k but specific to the
type of lattice. While matrix B also depends on which spring is being modified, the
matrices B corresponding to each spring are equivalent under a symmetry operation
of the crystal’s space group. The changes in the eigenvalues can then be expressed
as:

∆λi = ∆ku′mBum

≡ ∆k gm

where gi is a dimensionless number independent of k and ∆k.

Substituting these results into Equation (A.1), we obtain:

Fvib =
kBT

2N

∑
m

ln (klm +∆k gm) .

To the first order, we can express the vibrational entropy change as

∆Fvib =
∂Fvib

∂∆k

∣∣∣∣
∆k=0

∆k

=
kBT

2N

∑
m

gm
klm
∆k

= kBT

(
1

2N

∑
m

gm

lm

)
∆k

k

≡ kBTG
∆k

k
.

where G is a dimensionless geometrical factor depending only on the lattice type.
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In the limit of ∆k � k, we can obtain the change in vibrational entropy due to a
change in all the spring constants by simply summing the effect of the change ∆ks in
the stiffness of each spring s:

∆Fvib = kBTG
∑
s

∆ks
k

(A.2)

To determine the value of G, we consider the following particular case for which the
exact vibrational entropy change is known. Once the value of G is known, it can be
used in any other case sharing a same lattice type.

In a solid bound by springs of stiffness k is given by, if the stiffness of all springs
is increased by ∆k, each eigenvalue λm becomes λm

k+∆k
k
and the vibrational entropy

becomes:

F ′vib =
kBT

2N

∑
i

ln

(
λi
k +∆k

k

)

=
kBT

2N

∑
i

(
lnλi + ln

k +∆k

k

)

= Fvib +
kBT

2N

∑
i

ln
k +∆k

k

≈ Fvib + kBT
Nd

2N

∆k

k
+O

(
(∆k)2

)
= Fvib + kBT

Nd

2N

1

ZN/2

∑
s

∆k

k

= Fvib +
kBTd

ZN

∑
s

∆k

k
.

where Z is the number of nearest neighbors and
∑
s denotes a sum over all nearest

neighbor bonds. Since this result is exact to the first order, we can compare it to
Equation (A.2) and identify the unknown constant G to be d

ZN
. We thus obtain the

following result:

∆Fvib =
3kBT

ZN

∑
s

∆ks
k
. (A.3)

We now turn to the problem of calculating the vibrational entropy of mixing in a
binary alloy. We first define a normalized 3N × 3N dynamical matrix D̂ as follows:

D̂αβ (i, j) =
Φαβ (i, j)√
kσiσikσjσj

where kσiσi is the spring constant of an A−A bond if site i is occupied by a A atom
similarly for a site occupied by a B atom. For the purpose of calculating free energy
of formation, this normalized dynamical matrix gives the same result as the usual
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dynamical matrix because the factors in the denominator exactly cancel out, for the
same reason masses cancel out (See Appendix A.1). This transformation normalizes
the spring constant associated with A − A bonds and B − B bonds to 1 while the
spring constant associated with A − B bond becomes

(
kABj/

√
kAAkBB

)
where kAB,

kAA and kBB respectively denote the true spring constants of A−B, A−A and B−B
bonds. The usefulness of this normalization is to extend the applicability of Equation
(A.3) to the case where kAA and kBB are very different.

Let us start with a phase separated mixture of A and B atoms. Let us think of
this system as one where all atoms are identical but where the springs connecting
them can be either one of three types A−A, B−B or A−B. Where the springs are
placed defines which type of atom sits at each site. We now replace one A−A bond
in the pure A phase by an A−B bond and one B −B bond in the pure B phase by
an A− B bond. By Equation (A.3), the resulting change in vibrational entropy per
atom is:

∆Fvib =
kBTd

ZN

(
kAB√
kAAkBB

− 1 +
kAB√
kAAkBB

− 1

)
.

To satisfy the assumptions of the above derivation, we require that kAB/
√
kAAkBB �

1. If we create a total number nAB of A−B bonds, we perform the above operation
nAB/2 times and the vibrational entropy change is:

∆Fvib =
nAB

2

kBTd

ZN

(
kAB√
kAAkBB

− 1 +
kAB√
kAAkBB

− 1

)

To the first order (when kAB/
√
kAAkBB � 1), this expression is equivalent to

∆Fvib =
nAB

N

kBTd

2Z
ln

(
k2AB

kAAkBB

)
.

The nearest neighbor ECI of the cluster expansion of the vibrational free energy is
thus:

V1nn =
d

8
kBT ln

(
kAAkBB

k2AB

)
.

A.6 Instability

An extreme case of anharmonicity occurs when the energy surface, in the neighbor-
hood of a configuration ~σ, has no local minimum. As noted in [37] and [36], this
situation occurs sufficiently frequently to deserve a particular attention. A typical
example of such a situation occurs when the fcc-based L10 structure is unstable with
respect to a deformation along the Bain path, which leads to a bcc-based B2 struc-
ture. While it is possible to construct a separate cluster expansion for the fcc and bcc
phases, the fundamental question that arises is: What is the free energy of the L10
structure? Since it is unstable, the standard harmonic expression for the free energy
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can clearly not be used.

One suggested solution to this problem, described in [36], is to perform the coarse
graining in a different order than presented in Section 2.2.3. The sum over con-
figurations is performed first, and the vibrational properties of the configurational
averaged alloy are then calculated. The main limitation of this approach is that it
would be extremely difficult to compute the averaged vibrational properties by any
other method than by the so-called virtual crystal approximation (see Section A.3).
Another limitation is that it only addresses instabilities with respect to cell shape dis-
tortions, ignoring instabilities with respect to internal degrees of freedom (i.e. atomic
positions).

In this section, we present another approach to solve the instability problem. We
argue that the general formalism developed in Section 2.2.3 can in fact be adapted
to allow for instability.

While the coarse graining technique is most naturally interpreted as integrating
out the “fast” degrees of freedom (e.g. vibrations) before considering “slower” ones
(e.g. configurational changes)[28], the time scale of the various types of excitations
is, in fact, irrelevant. The partition function is simply a sum over states which can
be calculated in any order. As long as we can associate any vibrational state v of the
system with a configuration ~σ, the coarse graining procedure remains valid.

Under this point of view, it is clear that it does not matter whether there is even a
local minimum of energy in the portion of phase space associated with configuration
~σ. What is important, however, is that the neighborhood of configuration ~σ in phase
space is thoroughly sampled (i.e. that the constrained system is ergodic) over a
macroscopic time scale. There is no need for ergodicity within the time scale of the
configurational excitations. If the neighborhood of a given configuration ~σ is not fully
sampled before the alloy jumps to another configuration ~σ′, it is still possible that the
unsampled portion of phase space around ~σ will be visited at a later time, when the
system returns in the neighborhood of configuration ~σ. The ergodicity requirement at
the macroscopic time scale imposes the important but intuitively obvious constraint
that the phase space neighborhood of configuration ~σ cannot contain states that are
associated to different phases of the system.

This discussion shows that there is no fundamental limitation to the applicability
of the standard coarse-graining framework in the presence of instability. However,
we still need to describe how the free energy of an unstable configuration could be
determined in practice. The task is simplified by the fact that the free energy of
an unstable stable does not need to be extremely accurately determined, because
unstable states are relatively rarely visited, even at high temperatures. Nevertheless,
it is important to assign a free energy to those unstable states, to ensure that the
Ising model used to represent the alloy is well-defined.

The free energy associated with one configuration can be obtained by integrating
exp [−βE(~σ, v)] with respect to v over the portion of phase space associated with ~σ.
In the classical limit, we can label the vibrational states v by the position each particle
takes and the integration limits can be found by geometrical arguments. The quantum
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mechanical equivalent of this operation is complex,2 but unlikely to be needed in
practice. The unstable states are essentially never visited at low temperatures, where
a quantum mechanical treatment would be essential 3.

Focusing on the classical limit, we consider a unstable configuration ~σ. Let D be
the dynamical matrix evaluated at the saddle point of the energy surface closest to the
ideal undistorted configuration ~σ.4 We consider that when the state v of the system
is such that one atom moves away from its position at the saddle point by more than
r, it should not longer be considered part of configuration ~σ. For an instability with
respect to internal degrees of freedom (atomic positions), a natural choice for r would
be half the average nearest neighbor interatomic distance. For an instability with
respect to unit cell deformation, r could be half the change in the average nearest
neighbor distance induced by the displacive transformation.

The boundedness of the portion of phase space associated with ~σ can be accounted
for by replacing the usual classical partition function associated with one normal mode
of oscillation i by

1

h

∫ Li
−Li

exp

(
−
1

2
β ṡ2

)
dṡ

∫ Li
−Li

exp

(
−
1

2
βλis

2

)
ds

where λi is the i-th eigenvalue of the dynamical matrix, h is Planck’s constant and
Li is a measure of the size of the phase space neighborhood of ~σ along the direction
associated with normal mode i. This size parameter can be expressed in terms of the
parameter r just introduced. Let ui (j) =

ei(j)√
Mj
where ei is the i-th eigenvector of

D and Mj is the mass of atom j. After normalizing ui so that
∑
j u
2
i (j) = N , the

number of atom in the system, we can then write

Li = r

(
max
nn j,j′

‖ui (j)− ui (j
′)‖

)−1

where the maximum is taken over all nearest neighbor pairs of atoms j, j ′. This choice
of integration bounds approximately defines a neighborhood of ~σ such that no atom
moves farther than r from its position at the saddle point (relative to its neighbors).

2The quantum partition function can be written as the trace of the matrix exp (−βH), where
H is the (multibody) Hamiltonian of the system. The trace can computed in any convenient basis
and in particular one could use Dirac delta functions. In this fashion, it is possible to define a
localized free energy by summing only over the delta functions located in the neighborhood of one
configuration ~σ.
3This observation is related to the fact that quasi-harmonic approximation, which allows a

quantum-mechanical treatment, is accurate up to a temperature where the classical limit is reached.
4Is is possible that an unstable configuration ~σ cannot be associated with a saddle point and

the derivation would have to be modified. In particular the bounds of integration would have to be
made asymmetric.
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In this approximation, the free energy of an unstable state is given by:

F

N
=
E∗

N
−
kBT

N

∑
i

ln


kBT
hνi
erf


Li

√
2 (πνi)

2

kBT






where νi is the frequency of normal mode i and where the error function for real or
imaginary arguments is given by

erf (u) =
2u
√
π

∫ 1
0

e−u
2s2ds.

The suggested definition of the free energy of an unstable configuration has interesting
properties. First, as the neighborhood size Li increases, the expression reduces to the
usual harmonic expression. The effect of the correction is not limited to unstable
modes: Modes that are so soft that it is likely that the motion of the atoms exceeds r
are also affected. There may obviously be other definitions of Li. The above example
simply gives an example of how it could be calculated.

Going back to our initial example of the L10 → B2 instability, we can now outline
how this problem could be handled within the traditional coarse graining scheme.
Two separate clusters expansion need to be constructed, one for the bcc phases and
one for the fcc phases. But since we now know how to assign a free energy to the
unstable L10 configuration, the fcc cluster expansion can be successfully defined. The
free energy attributed to the L10 configuration should be sufficiently high so that the
free energy curve of the fcc phase in the vicinity of 0.5 concentration will lie above
the free energy curve of the bcc phase, as it should. The fact that both CVM or
Monte Carlo calculations on the fcc lattice would attribute a positive probability to
L10-like structures should not be regarded as a problem: This is precisely what will
ensure that the calculated fcc free energy curve lies above the bcc one.

The discussion has so far been concerned with the expression of the partition
function, which is the relevant quantity to consider when the phase diagram is cal-
culated with the CVM or the low temperature expansion. Let us now consider the
implications of this approach to Monte-Carlo simulations. Thermodynamic quantities
derived from averages, such as the average energy, are obviously unaffected by the
presence of unstable configurations. For quantities derived from fluctuations, such
as the heat capacity, slight modifications are needed. In traditional Monte Carlo
simulations, the heat capacity arising from vibrational degrees of freedom is consis-
tently neglected, and any thermodynamic quantity obtained from Monte Carlo can be
unambiguously interpreted as the configurational contribution. In the more general
setting presented here, there is an overlap between vibrational and configurational
fluctuations and the only way to obtain well defined thermodynamic quantities is to
fully account for the vibrational fluctuations. Fortunately, there is a straightforward
way to do so. The total variance of the energy (or any other quantity) can be exactly
expressed as a sum of the variance within each configuration ~σ and the variance of
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the average energy of each configuration:

〈
E2
〉
− 〈E〉2 =

∑
~σ

∑
v∈~σ

P~σvE
2
~σv −

(∑
~σ

∑
v∈~σ

P~σvE~σv

)2

=


∑

~σ

P~σE
2

~σ −

(∑
~σ

P~σE~σ

)2+∑
~σ

P~σ

(∑
v∈~σ

P~σv

P~σ

(
E~σv −E~σ

)2)
.

where P~σv is the probability of finding the system in state ~σ,v while P~σ =
∑
v∈~σ P~σv

and E~σ =
∑
v∈~σ

P~σv
P~σ
E~σv. The first term is the usual fluctuation obtained from Monte

Carlo. The second term is a correction which takes the form of a simple configura-
tion average of fluctuations within each configuration. The fluctuation of a system
constrained to remain in the vicinity of configuration ~σ is usually just as simple to
determine as its average properties. In the case of energy, the fluctuations within
each configuration are simply related the heat capacity of a harmonic solid.
The main objective of this section was to show that there is no fundamental prob-

lem associated with unstable states in coarse-graining formalism. While it is true that
the free energy of an unstable configuration is not uniquely defined, once a particular
way to coarse grain phase space is chosen, the free energy of all configurations can
be defined in a consistent fashion. There are admittedly some practical issues to be
resolved regarding the practical implementation of coarse graining in the presence of
instabilities, but the approach suggested in this section indicates that these difficulties
can be overcome.
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Appendix B

Structure construction algorithm

B.1 Introduction

This appendix describes an algorithm for constructing a structure from the config-
uration probabilities describing that structure. This algorithm differs from previous
ones in that it can prove the inconstructibility of a potential ground state, instead of
simply saying that no structure could be found with unit cell smaller than a given
volume. The algorithm gives one of the three following answers:

1. a periodic structure having the required probabilities exists;

2. there exists no structure (periodic or not) having the required probabilities;

3. the algorithm could not decide whether a structure can be found or not.

Note that the last case is rather unlikely. The algorithm can handle a piece of crystal
containing hundreds of atoms. If it fails to give a definite answer it means either that
the desired periodic structure has hundreds of atoms in its unit cell or that the cluster
needed to account for frustration effects contains hundreds of points.

The proposed algorithm initially proceeds as one would do by hand: it attempts
to overlap configurations in all possible ways that avoid frustration. What is new, is
the way it detects periodicities in the growing structure. Instead of trying all possible
unit cells, it simply constructs the structure without assuming any periodic boundary
conditions. It then detects in which directions the periodicities are and only tries unit
cells having those directions as lattice vectors.

One important limitation of this algorithm: it works only for structures associated
with vertices of the configuration polytope obtained from the v-matrix. These so-
called “primary vertices” are to be distinguished from “secondary” ones which are
obtained after cutting the configuration polytope obtained from the v-matrix with
new inequalities obtained using an even bigger maximal cluster.

In this Appendix, we will first motivate the use of our new scheme. We will then
present some implementation details that are crucial to make this algorithm practical.
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B.2 Basic Principles

Let us consider all supercells whose lattice vectors fit in a cube of n×n×n primitive
unit cell. There are (n3)3, or n9 of them. Symmetry lets us reduce that number, but
it will never change the order of the exponent. Hence, to determine the periodicity
of a structure using a scheme based on supercell enumeration requires of the order of
n9 operations.
Our algorithm determines periodicities in a structure by testing one-dimensional

periodicities. In a cube of n× n× n primitive cells there are n3 possible translation
vectors. Among those possible vectors, we select only those which agree with the
periodicities that appear to present in the growing structure. (The term “growing
structure” refers to the part of the structure that we know at the current stage in
the computations.) One can appreciate how small the resulting set of vector is: any
vector that maps one atom to an atom of a different type is discarded. Using the few
non discarded vectors, we consider all possible triplets of vectors (that is, cells). Then,
a more stringent test is applied to the candidate cells. This test essentially amounts
to building the structure assuming the periodic boundary conditions dictated by the
candidate cell. If such a construction is possible, then a periodic structure has been
found. We know (from Section 5.6.8) that the constructed structure must have the
right configuration probabilities since we only focus on structures associated with a
“primary” vertex.
Note that we avoid testing all possible unit cell by first eliminating lattice vectors

which are incompatible with the growing structure. For every discarded lattice vector,
we discard (roughly) the n3 cells having that lattice vector. Note that for small cells,
our algorithm can actually be slower than the cell enumeration one (since small cells
are typically the first ones to be enumerated). The gains become rapidly appreciable
as cell size increases, though. This does not mean that the algorithm is fast: for
example, be prepared to wait half an hour1 for ground states on the fcc lattice with
a 10 point octahedron as the maximal cluster.

B.3 Implementation

In order to make the above algorithm fast enough to be practical, one has to take
care of the various implementation details which are described in this section. The
solutions proposed are not claimed to be optimal. They are simply heuristics that
appear to speed up the process in most cases under some plausible assumptions. Note
that the implementation choices that were made will never affect the validity of the
answer but only the time it takes to find it.
It is nevertheless possible that different implementation choices might give you

different structures as an answer. But all the possible structures obtained by changing
the heuristics will have the same correlations. This occurs because ground states are
often degenerate. In any case, the answer to the question “is there a periodic structure

1on a DEC Alpha in 1995 . . .
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associated with a given set of correlation?” will remain unaffected.

B.3.1 Structure Construction

Exploring the tree of all possible ways to overlap configurations so that they agree
on their intersection takes some time. Hence, we need to try the most promising
alternatives first. Here are the criterions used to select the “best” way to add a new
configuration to the growing structure. This algorithm is recursive: once it has added
a new configuration, it calls itself to add the next. If a choice of configuration yields
frustration, the current procedure call returns and the parent procedure tries another
alternative. In this way, the tree of all possible structure is spanned. The algorithm
stops as soon as a periodic structure is found or when the whole tree of possibilities
has been spanned.
To add a new configuration to an existing growing structure, we start by finding

all possible symmetry operations one can apply to the maximal cluster so that it
overlaps at least one of the sites occupied by the growing structure. The “best” way
to place the cluster is chosen as following:

1. Maximize the number of sites where the transformed cluster and the growing
structure overlap.2

2. At equal amount of overlap, take the transformed clusters which are the closest
to the origin (this is approximated by the modulus of the lattice translation
component of the symmetry operation applied to the cluster).

3. For all clusters located at equal distance from the origin, we now check which
configurations can “decorate” a newly added cluster in a way that agrees with
the growing structure. We chose clusters which minimize the number of possible
configurations. (If the minimum number is actually zero, then this branch yields
no constructible structure and another branch has to be tried.)

4. If there are still more than one possible cluster, we arbitrarily take the first one
we found.

5. To decorate the newly added cluster, we first try configurations which destroys
the minimum amount of periodicity in the growing structure (see below). For
each tested configuration we recursively call the construction algorithm (with
the growing structure being enlarged by the newly added configuration).

The “amount of periodicity” is evaluated as follows. We first define a candidate
lattice vector as being a translation vector such that if one overlaps the growing
structure and a translated version of it, similar atoms will align, as illustrated in
Figure B-1. Intuitively, if the region where identical atom overlap (gray region in

2The trivial case where the transformed cluster lies inside the growing structure is ignored, unless
no configuration can be put on that cluster without contradicting the atomic configuration of growing
structure.

163



Figure B-1: A Candidate Lattice Vector.

the figure) is larger, the particular periodicity we are considering is more likely to be
present in the actual (infinite) structure we are seeking. Hence, a heuristic measure of
the “amount of periodicity” can be obtained by summing the areas of the overlapping
region (gray region) for all candidate lattice vectors.

B.3.2 Screening Out Candidate Cells

Every time we add a new configuration to the growing structure, we update the status
of all translation vectors. For a given growing structure, a particular translation vector
can be either

• incompatible with the growing structure (if it maps an atom A to an atom B
or vice-versa),

• compatible with the growing structure (i.e., it is a candidate lattice vector) or

• undetermined (the growing structure is not big enough to be able to tell).3

Note that it is not sufficient to find three non-coplanar candidate lattice vectors
to prove three-dimensional periodicity. A sufficient condition can be expressed in
term of the current size and shape of the growing structure. The growing structure
must be such that it contains the candidate unit cell plus a “buffer zone” obtained as
follows. Apply all possible lattice symmetry operations to the maximal cluster and
keep the transformed clusters which overlap the unit cell. Compute the union of all
these clusters and keep only sites which have positive coordinates. (Here, we assume
that the cell has one of its corners at the origin and that site coordinates are expressed
in the basis defined by the candidate unit cell.) This construction is illustrated in
Figure B-2 for the 2D case.
The justification of this construction is straightforward. A growing structure of

this size (or bigger) can be used to tile space with a periodicity given by the candidate
unit cell. The “buffer zone” guaranties that adding new copies of the growing struc-
ture will not generate configurations not encountered already. To see this, consider

3To increase efficiency, we let translation vectors be undetermined until the region where identical
atom overlap is bigger than some threshold (chosen to be the number of sites in the maximum
cluster).

164



candidate

unit cell

maximal cluster

origin

Figure B-2: Sufficient Condition for Two-Dimensional Periodicity.

Figure B-3: Problem Arising when no “Buffer Zone” is Used.

Figure B-3, which is an example where no buffer zone is used. The unit cell contains
only A-A and A-B bonds while a periodic repetition of it yields B-B bonds.
Since the construction of a “buffer zone” is rather computer intensive, we need

a way to avoid this test as much as possible. Starting with the list of candidate
lattice vectors we go through a sequence of increasingly more stringent (and more
computer intensive) tests to reduce the number of candidate unit cells. If a test fails,
the subsequent ones are not applied.

1. We take all triplets a, b, c of non coplanar vectors.

2. We check if a+ b, b+ c, a+ c and a + b+ c are also candidate vectors.

3. We check if the resulting cell has a volume compatible with the concentration
of each atom type.

4. We then use the length of the largest line segment that can fit in the unit cell
to quickly see if it would fit in the growing structure.4

5. Finally, the full “buffer zone” test is applied.

Parts of this screening process are really heuristic. Again, this is not a problem,
because either of the following can occur in the worst case.

4The width of the buffer zone is added to the length of the line segment. This width is approxi-
mated by the radius of gyration of the maximal cluster.
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• Some heuristic tests might be too stringent at some point and screen out per-
fectly valid unit cells. However, all tests are such that, if three-dimensional
periodicity exists, they will succeed for a big enough growing structure. They
may fail at an early time, but will always succeed eventually, if a not too big
periodic structure exists. The only drawback is a loss of speed.

• Some heuristic tests might be too lax, it which case the full, exact, “buffer zone”
test is applied too often. Again, rigor is not lost, only speed.

B.4 Conclusion

The proposed algorithm enables us to determine whether a potential ground state in
constructible or not. It will fail to give a definite answer only if a ground state’s unit
cell is very large or if frustration effects have a very long range.
It is important to keep in mind that this algorithm is limited to the problem of

constructing ground state structures. For arbitrary structures, the cell enumeration
algorithm is still the method of choice. Also, if the unit cell is known to be small or
if we want to be sure to obtain the smallest possible unit cell, the cell enumeration
algorithm should again be chosen.
For large unit cells (e.g., 30 atoms per unit cell) our algorithm is faster than if

one had to enumerate all unit cells. However, this can still be slow from a practical
point of view (maybe a few hours of computer time). It is probably possible to refine
the heuristics used to speed up the algorithm, but the present implementation seems
a reasonable compromise between complexity and speed.
As a by-product of this constructing code, a large library of functions related

to lattices and symmetry operations on them has been developed. It was made
sufficiently general to be easily used in other contexts.
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